
18/01/2026

Advanced Database Systems
Spring 2026

Lecture #05:

Buffer Management

R&G: Chapter 9.4

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

BUFFER MANAGEMENT

Transfer data between disk and memory

2

Page1

HeaderDirectory

Page2

Header
D is k S p a c e M a n a g e m e n t

B u f f e r M a n a g e m e n t

F i le s & In d e x M a n a g e m e n t

O p e r a t o r E x e c u t io n

Q u e r y P la n n in g

D a ta b a s e

S Q L C l ie n t

Page2

HeaderDirectory

Database File

Disk

Buffer Pool

Memory

2

BUFFER MANAGEMENT

Buffer pool: in-memory cache of disk pages, partitioned into frames

3

Page1

HeaderDirectory

Page2

Header

Page2

HeaderDirectory

Empty
Frame

Database File

Disk

Buffer Pool

Memory

Each frame can hold a page

Higher level code can

request (pin) a page

release (unpin) a page

3

BUFFER MANAGEMENT: PAGE REQUEST
4

Page1

HeaderDirectory

Page2

Header

Database File

Disk

Buffer Pool

Memory
Page2

HeaderDirectory

Get page #1

Pointer to page #1

Execution
Engine

Ensures requested page is in memory upon return

The illusion of operating only in memory

Higher levels need not to worry about
whether data is in memory or not

Page1

Header

4

18/01/2026

BUFFER MANAGEMENT: PAGE RELEASE

Higher levels need to explicitly “release” a page

5

Page1

HeaderDirectory

Page2

Header

Page2

HeaderDirectory

Database File

Disk

Buffer Pool

Memory

A page can be simultaneously used by multiple users

If nobody is using a page at the moment, only then
that page can be removed from the pool

But doesn’t have to be removed immediately

Done with page#2

OK

Execution
Engine

Page1

Header

5

OPEN QUESTIONS

What if the buffer pool has no space for a new page?
Use a replacement policy to decide which page to evict

What if a page gets modified? How will the buffer manager find out?

Dirty flag on page: Is page modified or not, set during release by higher levels

When evicting a dirty page, write it back to disk via disk space manager

How many users are concurrently using a page?

Pin counter per frame: # of concurrent users of the page

If pin counter = 0, the page is a candidate for replacement

6

6

BUFFER MANAGER STATE
Buffer pool

Large range of memory allocated at
DBMS server boot time (MBs-GBs)

Buffer manager metadata:
Smallish array in memory allocated at
DBMS server boot time

Page ID lookups need to be fast

Keep an in-memory index (hash table) on PageId

7

FrameId PageId Dirty? Pin Count
1 1 N 0
2 2 Y 1
3 8 N 0
4 6 N 2
5 4 N 0
6 5 N 0

Frame Frame Frame Frame Frame Frame

7

PROPER P IN/UNPIN NESTING

Database users (e.g., transactions) must properly “bracket” any page
operation using pin and unpin

Proper bracketing useful to keep a count of active users of a page

8

A read-only transaction

a = pin(pageno)
 .
 . .
 read data on page at memory address a .
 . .
unpin(pageno, false)

8

18/01/2026

P IN IMPLEMENTATION
9

Function pin(pageno)

if buffer pool already contains pageno then
 f = find frame containing pageno
 f.pinCount = f.pinCount + 1
 return address of frame f
else
 f = select a free frame if buffer is not full or
 a victim frame using the replacement policy
 if f.isDirty then
 write frame f to disk
 read page pageno from disk into frame f
 f.pinCount = 1
 f.isDirty = false
 return address of frame f

Invariant:
f.pinCount = 0

9

UNPIN IMPLEMENTATION

Why don’t we check if pageno is in the buffer pool ?

Why don’t we write back to disk during unpin?

10

Function unpin(pageno, dirty)

f = find frame containing pageno
f.pinCount = f.pinCount - 1
f.isDirty = f.isDirty || dirty

10

ADVANCED QUESTIONS

Concurrent operations on a page
1. The same page p is requested by more than one transaction

(i.e., pin counter of p > 1)

2. Those transactions perform conflicting writes on p

Solved by Concurrency Control module

… before the page is unpinned

Buffer manager may assume everything is in order whenever it gets an unpin(p, true) call

What if system crashes before write-back?
Solved by Recovery module

More about CC & Recovery later

11

11

BUFFER REPLACEMENT POLICIES

Page is chosen for replacement by a replacement policy:
Least Recently Used (LRU), Clock

Most Recently Used (MRU)

Others: Random, Toss-Immediate, FIFO, LRU-K

Policy can have big impact on #I/Os

Effectiveness depends on the access patterns in high-level code

No single policy handles all possible scenarios well

12

12

18/01/2026

LEAST RECENTLY USED (LRU)
Very common policy: intuitive and simple

Track time each frame was last unpinned (end of use)

Replace the frame which was least recently used (lowest last used time)

Pinned frames are not available to replace

14

FrameId PageId Dirty? Pin Count Last Used
1 1 N 0 43
2 2 Y 1 21
3 8 N 0 22
4 6 N 2 11
5 4 N 0 24
6 5 N 0 15

Pinned frames

Next-to-replace frame

14

LEAST RECENTLY USED (LRU)
Good for repeated accesses to popular pages (temporal locality)

Unpopular pages accessed a while ago are more likely to be replaced

Can be costly. Why?
Need to “find min” on the last used attribute

Naive: Scan table to find the unpinned frame with the lowest last used time (linear time)

Better: Use priority queues to keep frames in sorted order (log time)

Priority queues can still be expensive as page accesses are frequent

Approximate LRU: CLOCK policy

15

15

CLOCK REPLACEMENT POLICY

Each frame has a reference bit
Set referenced = 1 when pin count increases

N frames arranged in a circular buffer with a “clock hand”
Clock hand = next page to consider for eviction

16

p2p6

p3p5

p4

p1

while victim is not found:
 if frames[hand].pinCount == 0 then
 if frames[hand].referenced == 1 then
 frames[hand].referenced = 0
 else
 victim = address of frames[hand]
 hand = (hand + 1) mod N

Invoked when the pool is full
and we need to evict a page

16

CLOCK POLICY STATE: EXPLICIT & ILLUSTRATED
17

page
3

page
5

page
2

page
4

page
8

page
1

ref=1

ref=1

ref=1

ref=0

ref=0

ref=1

FrameId PageId Dirty? Pin Count Ref Bit

1 1 N 1 1

2 3 N 1 1

3 2 N 0 1

4 8 N 0 0

5 4 N 0 0

6 5 N 0 1

Clock Hand

2

17

18/01/2026

CLOCK POLICY: READ PAGE 10
The current buffer state is on the right

A read request for page 10 arrives

The buffer pool has no page 10 and is full

The buffer manager needs to evict one
page. Which one?

Current frame has pin count > 0
Action: Skip

18

page
3

page
5

page
2

page
4

page
8

page
1

ref=1

ref=1

ref=1

ref=0

ref=0

ref=1

18

CLOCK POLICY: READ PAGE 10 (CONT.)
Current frame not pinned

Reference bit set
Clear reference bit

Skip

19

page
3

page
5

page
2

page
4

page
8

page
1

ref=1

ref=1

ref=1

ref=0

ref=0

ref=1

19

CLOCK POLICY: READ PAGE 10 (CONT.)
Current frame not pinned

Reference bit unset
Replace page 8 by page 10

20

page
3

page
5

page
2

page
4

page
8

page
1

ref=1

ref=0

ref=1

ref=0

ref=0

ref=1

20

CLOCK POLICY: READ PAGE 10 (CONT.)
Current frame not pinned

Reference bit unset
Replace page 8 by page 10

Set pinned

Set reference bit

Advance clock

21

page
3

page
5

page
2

page
4

page
10

page
1

ref=1

ref=0

ref=1

ref=1

ref=0

ref=1

21

18/01/2026

CLOCK POLICY: READ PAGE 10 (CONT.)
Current frame not pinned

Reference bit unset
Replace page 8 by page 10

Set pinned

Set reference bit

Advance clock

Return pointer to page 10

22

page
3

page
5

page
2

page
4

page
10

page
1

ref=1

ref=0

ref=1

ref=1

ref=0

ref=1

22

REPLACEMENT POLICIES CAN FAIL
LRU and CLOCK are susceptible to sequential flooding

Scans pollute the buffer with pages that might not be needed soon

For scans the most recently used page is the most unneeded page!

26

Example 1

A buffer pool consists of 6 frames. A query repeatedly scans relation R.

Case 1: Let the size of relation R be 6 pages. How many I/O do you expect?

Case 2: Now let the size of relation R be 7 pages. How many I/O do you expect?

26

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames
Assume the frames are initially empty

Case 1: R consists of 6 pages

27

Frame Frame Frame Frame Frame
Page

1

Buffer Pool (After 1 page request)

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Disk Pages

27

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames
Assume the frames are initially empty

Case 1: R consists of 6 pages

First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

28

Buffer Pool (After 6 page requests)

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Disk Pages

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

28

18/01/2026

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames
Assume the frames are initially empty

Case 1: R consists of 6 pages

First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

Case 2: R consists of 7 pages

29

Buffer Pool (After 6 page requests)

Disk Pages

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Page
7

29

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames
Assume the frames are initially empty

Case 1: R consists of 6 pages

First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

Case 2: R consists of 7 pages

P7 evicts P1, restart scan

30

Buffer Pool (After 7 page requests)

Disk Pages

Page
2

Page
3

Page
4

Page
5

Page
6

Page
7

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Page
7

30

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames
Assume the frames are initially empty

Case 1: R consists of 6 pages

First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

Case 2: R consists of 7 pages

P7 evicts P1, restart scan,
P1 evicts P2, P2 evicts P3, etc.

All subsequent page requests are misses!

31

Buffer Pool (After 8 page requests)

Disk Pages

Page
1

Page
3

Page
4

Page
5

Page
6

Page
7

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Page
7

31

REPEATED SCAN (MRU)

Most Recently Used (MRU)
First 6 requests are unavoidable misses

32

Buffer Pool (After 6 page requests)

Disk Pages

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Page
7

32

18/01/2026

REPEATED SCAN (MRU)

Most Recently Used (MRU)
First 6 requests are unavoidable misses

Request for P7 evicts P6

After restart, P1-P5 requests are all hits!

33

Buffer Pool (After 7 page requests)

Disk Pages

Page
2

Page
3

Page
4

Page
5

Page
7

Page
1

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Page
7

33

REPEATED SCAN (MRU)

Most Recently Used (MRU)
First 6 requests are unavoidable misses

Request for P7 evicts P6

After restart, P1-P5 requests are all hits!

Request for P6 evicts P5

Next 5 requests are also hits!

and so on…

34

Buffer Pool (After 13 page requests)

Page
2

Page
3

Page
4

Page
5

Page
6

Page
1

Disk Pages

Page
2

Page
3

Page
4

Page
6

Page
7

Page
1

Page
7

34

BEST REPLACEMENT POLICY?
LRU suffers from sequential flooding

But good for random access (hot vs. cold data)

LRU-K variant:

Consider history of the last K references

Evict the page whose K-th most recent access is furthest away in the past

MRU better fit for repeated sequential scans
Repeated scans are very common in database workloads (e.g., nested-loops join)

Hybrids are not uncommon in modern DBMSs
PostgreSQL uses CLOCK but handles sequential scans separately

35

35

BUFFER MANAGEMENT IN PRACTICE

Priority hints
The DBMS knows the context of each page during query execution

It can provide hints to the buffer manager on whether a page is important or not

Page fixing & hating:

Request to fix a page as it may be useful soon (e.g., nested-loop joins)

Request to hate a page as it may not be accessed soon (e.g., pages in a sequential scan)

Partitioned buffer pools
Separate pools for tables, indexes, logs, etc.

36

36

18/01/2026

BUFFER MANAGEMENT IN PRACTICE

Page Prefetching
Ask disk space manager for a run of sequential pages

E.g., on request for Page 1, ask for Pages 2-5

Why does this help?

Amortise random I/O overhead

Allow computation while I/O continues in background
(disk and CPU are “parallel devices”)

37

37

WHY NOT USE THE OS?
Wait! Doesn’t the filesystem (OS) manage buffers and pages too?

Yes, but:
DBMS requires ability to force flushing pages to disk in correct order

Required for recovery, as discussed later

DBMS has more information about query plans and access patterns of operators

Affects both page replacement and prefetching

Portability: different filesystem, different behaviour

The OS is not your friend!

38

38

SUMMARY

Buffer Manager
Mediator between storage and main memory

Maps disk page IDs to RAM addresses

Ensures each requested page is “pinned” in RAM
To be (briefly) manipulated in-memory

And then unpinned by the caller!

Attempts to minimize “cache misses”
By replacing pages unlikely to be referenced

By prefetching pages likely to be referenced

39

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execut ion

Query P lanning

Database

SQL Cl ient

39

