o 2
THE UNIVERSITY
of EDINBURGH BUFFER MANAGEMENT
Transfer data between disk and memory ,
SQL Client
Advanced Database Systems it b ,/—I N
% Directory : :
mmn| | Page2 i i
1
1 1
Buffer Management oW e |
~ [Wl ok Space vanagemen: [
HER 1 1
R&G: Chapter 9.4) mmm [raget il Page2 ; !
Disk I Database H
N e v
Database File
If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk
1 2
3 4
BUFFER MANAGEMENT BUFFER MANAGEMENT: PAGE REQUEST
Buffer pool: in-memory cache of disk pages, partitioned into frames Ensures requested page is in memory upon return
Buffer Pool Buffer Pool . .
Get page #1 xecution
% Directory Each frame can hold a page % Directory Header, . Engine
{ [[] Empty { [[]
HEN [Page2 ERICKE Higher level code can HEE [Pase2 __/—'
Memory . Memory
request (pin) a page Pointer to page #1
_________ 11________ release (unpin) a page _________11________
iees oirectory [Y The illusion of operating only in memory
o EEE o EEE .
Ry ¢ mmm [l razer [Page2 Ry ¢ EEE Page2 Higher levels need not to worry about
Disk Disk whether data is in memory or not
Database File Database File

BUFFER MANAGEMENT: PAGE RELEASE

Higher levels need to explicitly “release” a page

Buffer Pool .
Done with page#2 Execution
 — Engine
([[]
(1] Page2 Page1l _/—'
Memory
OK
A page can be simultaneously used by multiple users
poge can be s e By e
Q (11| If nobody is using a page at the moment, only then
A HEE [Pagel | Page2 that page can be removed from the pool
Disk But doesn't have to be removed immediately

Database File

OPEN QUESTIONS

What if the buffer pool has no space for a new page?

Use a replacement policy to decide which page to evict

What if a page gets modified? How will the buffer manager find out?
Dirty flag on page: Is page modified or not, set during release by higher levels

When evicting a dirty page, write it back to disk via disk space manager

How many users are concurrently using a page?
Pin counter per frame: # of concurrent users of the page

If pin counter = 0, the page is a candidate for replacement

BUFFER MANAGER STATE

Buffer pool

Large range of memory allocated at
DBMS server boot time (MBs-GBs)

Buffer manager metadata:

Smallish array in memory allocated at

DBMS server boot time

Page ID lookups need to be fast

Keep an in-memory index (hash table) on Pageld

o o |~ [w [N =

oA o oo (o |=

zZ | Z |Z |=Z |< |=

® |® N (o = |

PROPER PIN/UNPIN NESTING

Database users (e.g., transactions) must properly “bracket” any page
operation using pin and unpin

A read-only transaction

a = pin(pageno)
" read data on page at memory address a

unpin(pageno, false)

Proper bracketing useful to keep a count of active users of a page

PIN IMPLEMENTATION

Function pin(pageno)

if buffer pool already contains pageno then
f = find frame containing pageno
f.pinCount = f.pinCount + 1
return address of frame f
else
f = select a free frame if buffer is not full or
a victim frame using the replacement policy
if f.isDirty then Invariant:
write frame f to disk f.pinCount = @
read page pageno from disk into frame f
f.pinCount = 1
f.isDirty = false
return address of frame f

UNPIN IMPLEMENTATION

Function unpin(pageno, dirty)

f = find frame containing pageno
f.pinCount = f.pinCount - 1
f.isDirty = f.isDirty || dirty

Why don't we check if pageno is in the buffer pool ?

Why don't we write back to disk during unpin?

ADVANCED QUESTIONS

Concurrent operations on a page

1. The same page p is requested by more than one transaction
(i.e., pin counter of p > 1)

2. Those transactions perform conflicting writes on p

Solved by Concurrency Control module

... before the page is unpinned
Buffer manager may assume everything is in order whenever it gets an unpin(p, true) call

What if system crashes before write-back?

Solved by Recovery module

More about CC & Recovery later

11

10

BUFFER REPLACEMENT POLICIES

Page is chosen for replacement by a replacement policy:
Least Recently Used (LRU), Clock

Most Recently Used (MRU)
Others: Random, Toss-Immediate, FIFO, LRU-K

Policy can have big impact on #I/0s
Effectiveness depends on the access patterns in high-level code

No single policy handles all possible scenarios well

12

LEAST RECENTLY USED (LRU)

Very common policy: intuitive and simple
Track time each frame was last unpinned (end of use)
Replace the frame which was least recently used (lowest last used time)

Pinned frames are not available to replace

FrameId PageId Dirty? Pin Count Last Used

1 1 N [43

2 2 Y 1 21 ~

3 8 N 0 22 Pinned frames

4 6 N 2 11 ~

5 4 N 0 24

6 5 N 9 15 +~— Next-to-replace frame

14

CLOCK REPLACEMENT PoLICY /\

Each frame has a reference bit

W
Set referenced = 1 when pin count increases ‘ l

N frames arranged in a circular buffer with a “clock hand”

Clock hand = next page to consider for eviction

while victim is not found:
if frames[hand].pinCount == @ then
if frames[hand].referenced == 1 then
frames[hand].referenced = 0 Invoked when the pOO| is full
else and we need to evict a page
victim = address of frames[hand]
hand = (hand + 1) mod N

LEAST RECENTLY USED (LRU)

Good for repeated accesses to popular pages (temporal locality)

Unpopular pages accessed a while ago are more likely to be replaced

Can be costly. Why?
Need to “find min” on the last used attribute
Naive: Scan table to find the unpinned frame with the lowest last used time (linear time)
Better: Use priority queues to keep frames in sorted order (log time)

Priority queues can still be expensive as page accesses are frequent

Approximate LRU: CLOCK policy

15

CLocK PoLicy STATE: EXPLICIT & ILLUSTRATED

1
1
] ref=1 S ref=1
5 3
0
1
ref=0 ref=1
4 2
SE
8

ref=0

oo s |w v |—
o |s oo o [w [= '.'_
z|lz|z|z|=z|=
ol|leo|o|e|=|—

16

17

CLocK PoLicy: READ PAGE 10

The current buffer state is on the right 5
ref=1
A read request for page 10 arrives

The buffer pool has no page 10 and is full ref=1

The buffer manager needs to evict one (
page. Which one?

Current frame has pin count >0

\/

ref=0

Action: Skip

e BN
pagge ref=1
o

Ml page page [
ref=0 ref=1

18

CLocKk PoLicy: READ PAGE 10 (CONT.)

L]
Py ref=1
’//,' 1

Current frame not pinned

Reference bit unset
Replace page 8 by page 10

ref=1

ref=0 I page ref=0

|

ref—

~\\\\ A
page ref=1

20

CLock PoLicy: READ PAGE 10 (CONT.)

.
ref=1
/ 1N

ref=1
5

=0 &S page
ol

N

Current frame not pinned

Reference bit set

Clear reference bit
Skip

page
8

ref=0

0
RS ref=1
E]

ref=1

19

CLocK PoLicy: READ PAGE 10 (CONT.)

0
page ref 1
ref=0 I page ref=0

page

Current frame not pinned

Reference bit unset
Replace page 8 by page 10
Set pinned
Set reference bit

Advance clock

ref—

20

21

21

22

CLocK PoLicy: READ PAGE 10 (CONT.)

Current frame not pinned o
. ref=1
Reference bit unset P P ~ O
Repl 8b 10
eplace page 8 by page ref-1 IS page [f0aN
Set pinned 5 E

Set reference bit ()
Advance clock
Ml page page [
Return pointer to page 10 ref=0 ref=0
°
\ pre /
10

ref=1

26

REPLACEMENT PoLICIES CAN FAIL

LRU and CLOCK are susceptible to sequential flooding
Scans pollute the buffer with pages that might not be needed soon

For scans the most recently used page is the most unneeded page!

A buffer pool consists of 6 frames. A query repeatedly scans relation R.

Case 1: Let the size of relation R be 6 pages. How many I/0 do you expect?

Case 2: Now let the size of relation R be 7 pages. How many I/0 do you expect?

22

27

REPEATED SCAN (LRU)

. Buffer Pool (After 1 t
The buffer pool consists of 6 frames uffer Pool (After 1 page request)

Assume the frames are initially empty
Page
1 Frame}iFrame} iFrame|Frame}!Frame

Case 1: R consists of 6 pages

Disk Pages

Page || Page | Page J| Page || Page | Page
1 2 3 4 5 6

27

26
28
. Buffer Pool (After 6 page requests
The buffer pool consists of 6 frames (page red)
Assume the frames are initially empty
Page || Page f| Page | Page || Page | Page
1 2 3 4 5 6
Case 1: R consists of 6 pages
First 6 requests are unavoidable misses
Subsequent requests P1-P6 are all hits! Disk Pages
1 2 3 4 5 3
28

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames

Assume the frames are initially empty

Case 1: R consists of 6 pages
First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

Case 2: R consists of 7 pages

29

Buffer Pool (After 6 page requests)
Page || Page | Page || Page | Page || Page
1 2 3 4 5 3

Disk Pages

Page | Page || Page || Page | Page || Page | Page
1 2 3 4 5 6 7

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames

Assume the frames are initially empty

Case 1: R consists of 6 pages
First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

30

Buffer Pool (After 7 page requests)

Page || Page | Page || Page | Page || Page

7 2 E 4 5 3
.

Disk Pages

Case 2: R consists of 7 pages

P7 evicts P1, restart scan

.y
Page || Page | Page || Page | Page | Page | Page
1 2 3 4 5 6 7

29

30

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames

Assume the frames are initially empty

Case 1: R consists of 6 pages
First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

Case 2: R consists of 7 pages

P7 evicts P1, restart scan,
P1 evicts P2, P2 evicts P3, etc.

All subsequent page requests are misses!

31

Buffer Pool (After 8 page requests)
Page || Page | Page J| Page || Page | Page
7 1 B] 4 5] 6

Disk Pages

q
Page || Page || Page § Page | Page || Page | Page
1 2 3 4 5 6 7

REPEATED SCAN (MRU)

Most Recently Used (MRU)

First 6 requests are unavoidable misses

32

Buffer Pool (After 6 page requests)
Page || Page f| Page | Page || Page | Page
1 2 3 4 5 6

Disk Pages

g
Page || Page | Page || Page | Page | Page | Page
1 p 3 4 5 6 7

31

32

REPEATED SCAN (MRU)

Buffer Pool (After 7 page requests)

Most Recently Used (MRU)

First 6 requests are unavoidable misses

Page || Page | Page || Page | Page || Page
1 2 3 4 5 7
Disk Pages

Page | Page || Page || Page | Page || Page | Page
1 2 3 4 5 6 7

Request for P7 evicts P6

After restart, P1-P5 requests are all hits!

33

REPEATED SCAN (MRU)

Buffer Pool (After 13 page requests)
Page || Page | Page || Page | Page || Page
1 p) 3 4 6 7

Disk Pages

Page || Page | Page || Page | Page | Page | Page
1 2 3 4 5 6 7

Most Recently Used (MRU)

First 6 requests are unavoidable misses

Request for P7 evicts P6

After restart, P1-P5 requests are all hits!

Request for P6 evicts P5

Next 5 requests are also hits!

and so on...

33

BEST REPLACEMENT POLICY?

LRU suffers from sequential flooding
But good for random access (hot vs. cold data)

LRU-K variant:
Consider history of the last K references

Evict the page whose K-th most recent access is furthest away in the past

MRU better fit for repeated sequential scans

Repeated scans are very common in database workloads (e.g., nested-loops join)

Hybrids are not uncommon in modern DBMSs
PostgreSQL uses CLOCK but handles sequential scans separately

35

35

34

36

BUFFER MANAGEMENT IN PRACTICE

Priority hints
The DBMS knows the context of each page during query execution
It can provide hints to the buffer manager on whether a page is important or not
Page fixing & hating:
Request to fix a page as it may be useful soon (e.g., nested-loop joins)
Request to hate a page as it may not be accessed soon (e.g., pages in a sequential scan)

Partitioned buffer pools

Separate pools for tables, indexes, logs, etc.

36

Page Prefetching
Ask disk space manager for a run of sequential pages
E.g., on request for Page 1, ask for Pages 2-5
Why does this help?
Amortise random I/0 overhead

Allow computation while I/0 continues in background
(disk and CPU are “parallel devices”)

BUFFER MANAGEMENT IN PRACTICE

37

WHY NOT USE THE OS?

Wait! Doesn't the filesystem (OS) manage buffers and pages too?

Yes, but:
DBMS requires ability to force flushing pages to disk in correct order
Required for recovery, as discussed later
DBMS has more information about query plans and access patterns of operators
Affects both page replacement and prefetching

Portability: different filesystem, different behaviour

The OS is not your friend!

38

SUMMARY

Buffer Manager
Mediator between storage and main memory

Maps disk page IDs to RAM addresses

Ensures each requested page is “pinned” in RAM
To be (briefly) manipulated in-memory

And then unpinned by the caller!

Attempts to minimize “cache misses”
By replacing pages unlikely to be referenced

By prefetching pages likely to be referenced

A
-

SQL Client

L
/’

Query Planning
Operator Execution
Files & Index Management
Buffer Management

Disk Space Management

Database

39

38

