@\ THE UNIVERSITY
\#N/: of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #05:
Buffer Management

R&G: Chapter 9.4

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

BUFFER MANAGEMENT

Transfer data between disk and memory

Buffer Pool

Directory

HER
]] Page2

Directory

Database File

Y

ot EEN NN EEN BN DN NN S S N S N N S S N S S N N S S S .y,

)

SQL Client

Query Planning
Operator Execution
Files & Index Management

Buffer Management

Disk Space Management

E Database j

-------------'

F
/

BUFFER MANAGEMENT

Buffer pool: in-memory cache of disk pages, partitioned into frames

Buffer Pool

Each frame can hold a page

Directory

EEE |
EEE § Page2 Higher level code can

request (pin) a page

release (unpin) a page

Directory

Database File

BUFFER MANAGEMENT: PAGE REQUEST

Ensures requested page is in memory upon return

Buffer Pool

HEE
]] Page2 Page1

Get page #1 Execution
— Engine
—
—

Directory

Database File

Pointer to page #1

The illusion of operating only in memory

Higher levels need not to worry about
whether data is in memory or not

BUFFER MANAGEMENT: PAGE RELEASE

Higher levels need to explicitly “release” a page

Buffer Pool

HEE
]] Page2 Page1

Done with page#2 Execution
— Engine
—p
I

Directory

Database File

A page can be simultaneously used by multiple users

If nobody is using a page at the moment, only then
that page can be removed from the pool

But doesn't have to be removed immediately

OPEN QUESTIONS

What if the buffer pool has no space for a new page?

Use a replacement policy to decide which page to evict

What if a page gets modified? How will the buffer manager find out?

Dirty flag on page: Is page modified or not, set during release by higher levels

When evicting a dirty page, write it back to disk via disk space manager

How many users are concurrently using a page?
Pin counter per frame: # of concurrent users of the page

If pin counter = 0, the page is a candidate for replacement

BUFFER MANAGER STATE

Buffer pool | e e e ey e e ,

Large range of memory allocated at EFrameE
DBMS server boot time (MBs-GBs) L |

Buffer manager metadata:

Smallish array in memory allocated at 1 1 N 0
DBMS server boot time 2 2 Y 1
Page ID lookups need to be fast j : : 2
Keep an in-memory index (hash table) on Pageld - . 3 ;

6 5 N 0

PROPER PIN/UNPIN NESTING

Database users (e.g., transactions) must properly “bracket” any page
operation using pin and unpin

A read-only transaction

a = pin(pageno)

" read data on page at memory address a

uﬁpin(pageno, false)

Proper bracketing useful to keep a count of active users of a page

PIN IMPLEMENTATION

Function pin(pageno)

if buffer pool already contains pageno then
f = find frame containing pageno
f.pinCount = f.pinCount + 1
return address of frame f

else

if f.isDirty then
write frame f to disk
read page pageno from disk into frame f
f.pinCount = 1
f.isDirty = false
return address of frame f

f = select a free frame if buffer is not full or
a victim frame using the replacement policy

4

—

1

Invariant:

f.pinCount

0

UNPIN IMPLEMENTATION

Function unpin(pageno, dirty)

f = find frame containing pageno
f.pinCount = f.pinCount - 1
f.isDirty = f.isDirty || dirty

Why don't we check if pageno is in the buffer pool ?

Why don’t we write back to disk during unpin?

10

11

ADVANCED QUESTIONS

Concurrent operations on a page

1. The same page p is requested by more than one transaction
(i.e., pin counter of p > 1)

2. Those transactions perform conflicting writes on p

Solved by Concurrency Control module
... before the page is unpinned

Buffer manager may assume everything is in order whenever it gets an unpin(p, true) call

What if system crashes before write-back?

Solved by Recovery module

More about CC & Recovery later

BUFFER REPLACEMENT POLICIES

Page is chosen for replacement by a replacement policy:

Least Recently Used (LRU), Clock
Most Recently Used (MRU)
Others: Random, Toss-Immediate, FIFO, LRU-K

Policy can have big impact on #1/0s

Effectiveness depends on the access patterns in high-level code

No single policy handles all possible scenarios well

12

LEAST RECENTLY USED (LRU)

Very common policy: intuitive and simple

Track time each frame was last unpinned (end of use)

Replace the frame which was least recently used (lowest last used time)

Pinned frames are not available to replace

FrameIld Pageld Dirty? Pin Count Last Used

2 2 Y 1 21
3 8 N 0 22
4 6 N 2 11
5 4 N 0 24
6 5 N 9 15

~
Pinned frames
/

«— Next-to-replace frame

14

LEAST RECENTLY USED (LRU)

Good for repeated accesses to popular pages (temporal locality)

Unpopular pages accessed a while ago are more likely to be replaced

Can be costly. Why?
Need to “find min” on the last used attribute
Naive: Scan table to find the unpinned frame with the lowest last used time (linear time)
Better: Use priority queues to keep frames in sorted order (log time)

Priority queues can still be expensive as page accesses are frequent

Approximate LRU: CLOCK policy

15

16

CLOCK REPLACEMENT PoLICY P - I

Set referenced = 1 when pin count increases

| K
Each frame has a reference bit (\y:\\I l

N frames arranged in a circular buffer with a “clock hand N /

Clock hand = next page to consider for eviction

while victim is not found:
if frames[hand].pinCount == @ then
if frames[hand].referenced == 1 then
frames[hand].referenced = 0 Invoked when the pool is full
else and we need to evict a page
victim = address of frames[hand]
hand = (hand + 1) mod N

CLocK PoLicy STATE: EXPLICIT & ILLUSTRATED

o
1 1 N 1 1
2 3 N 1 1
3 2 N 0 1
4 8 N 0 0
5 4 N 0 0
6 5 N 0 1

CLock PoLicy: READ PAGE 10

The current buffer state is on the right

A read request for page 10 arrives

The buffer pool has no page 10 and is full ref=1

The buffer manager needs to evict one (
page. Which one?

ref=
Current frame has pin count >0

Action: Skip \ /

ref=0

18

19

CLocK PoLicy: READ PAGE 10 (CONT.)

Current frame not pinned ”
. page ref=1
Reference bit set / ~. C
Clear reference bit
, ref=1 B ref=1
Skip 5 3

’ page _
ref=1

ref=0
SE
8

ref=0

CLocK PoLicy: READ PAGE 10 (CONT.)

Current frame not pinned .
, f=1
Reference bit unset re

/ 1 \ °
Replace page 8 by page 10
ref=1 pa3ge ref=1

syl Page page -
ref=0 I ref=0
SE
8

ref=0

20

CLocK PoLicy: READ PAGE 10 (CONT.)

Current frame not pinned

Reference bit unset
Replace page 8 by page 10
Set pinned
Set reference bit

Advance clock

o
page I'Ef—
ref=1 page ref=1

\ /

page

ref-

21

CLocK PoLicy: READ PAGE 10 (CONT.)

Current frame not pinned

Reference bit unset
Replace page 8 by page 10
Set pinned
Set reference bit
Advance clock
Return pointer to page 10

o
page ref=1
/ 1

22

\ °
ref=1 page page ref=1

ref=0 / ref=0

page

ref=1

REPLACEMENT POLICIES CAN FAIL

LRU and CLOCK are susceptible to sequential flooding
Scans pollute the buffer with pages that might not be needed soon

For scans the most recently used page is the most unneeded page!

A buffer pool consists of 6 frames. A query repeatedly scans relation R.

Case 1: Let the size of relation R be 6 pages. How many I/0O do you expect?

Case 2: Now let the size of relation R be 7 pages. How many |I/O do you expect?

26

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames

Assume the frames are initially empty

Case 1: R consists of 6 pages

Buffer Pool (After 1 page request)

Page
1

Disk Pages

Page Page Page Page Page Page
1 2 3 4 5 6

27

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames

Assume the frames are initially empty

Case 1: R consists of 6 pages
First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits!

Buffer Pool (After 6 page requests)

Page Page Page Page Page Page
1 2 3 4 5 6

Disk Pages

Page Page Page Page Page Page
1 2 3 4 5 6

28

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames Buffer Pool (After 6 page requests)

Assume the frames are initially empty
Page Page Page Page Page Page
1 2 3 4 5 6
Case 1: R consists of 6 pages

First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits! Disk Pages

Case 2: R consists of 7 pages

Page Page Page Page Page Page | Page
1 2 3 4 5 6 7

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames Buffer Pool (After 7 page requests)

Assume the frames are initially empty
Page Page Page Page Page Page
7 2 3 4 5 6
Case 1: R consists of 6 pages

First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits! Disk Pages

Page Page Page Page Page Page | Page
1 2 3 4 5 6 7

Case 2: R consists of 7 pages

P7 evicts P1, restart scan

REPEATED SCAN (LRU)

The buffer pool consists of 6 frames Buffer Pool (After 8 page requests)

S initia”y empty
Page Page Page Page Page Page
Case 1: R consists of 6 pages

First 6 requests are unavoidable misses

Subsequent requests P1-P6 are all hits! Disk Pages

Case 2: R consists of 7 pages

Page Page Page Page Page Page | Page
1 2 3 4 5 6 7

P7 evicts P1, restart scan,

P1 evicts P2, P2 evicts P3, etc.

All subsequent page requests are misses!

REPEATED SCAN (MRU)

Most Recently Used (MRU)

First 6 requests are unavoidable misses

Buffer Pool (After 6 page requests)

Page Page Page Page Page Page
1 2 3 4 5 6

Disk Pages

Page Page Page Page Page Page | Page
1 2 3 4 5 6 7

32

REPEATED SCAN (MRU)

Most Recently Used (MRU) Buffer Pool (After 7 page requests)

First 6 requests are unavoidable misses
Page § Page § Page § Page | Page § Page
Request for P7 evicts P6 1 2 3 4 5 7

After restart, P1-P5 requests are all hits!

Disk Pages

Page Page Page Page Page Page | Page
1 2 3 4 5 6 7

REPEATED SCAN (MRU)

Most Recently Used (MRU)
First 6 requests are unavoidable misses
Request for P7 evicts P6
After restart, P1-P5 requests are all hits!
Request for P6 evicts P5

Next 5 requests are also hits!

Buffer Pool (After 13 page requests)

Page Page Page Page Page Page
1 2 3 4 6 7

Disk Pages

and so on...

Page Page Page Page Page Page | Page
1 2 3 4 5 6 7

34

BEST REPLACEMENT PoOLICY?

LRU suffers from sequential flooding

But good for random access (hot vs. cold data)
LRU-K variant:

Consider history of the last K references

Evict the page whose K-th most recent access is furthest away in the past

MRU better fit for repeated sequential scans

Repeated scans are very common in database workloads (e.g., nested-loops join)

Hybrids are not uncommon in modern DBMSs
PostgreSQL uses CLOCK but handles sequential scans separately

35

BUFFER MANAGEMENT IN PRACTICE

Priority hints
The DBMS knows the context of each page during query execution
It can provide hints to the buffer manager on whether a page is important or not
Page fixing & hating:
Request to fix a page as it may be useful soon (e.g., nested-loop joins)

Request to hate a page as it may not be accessed soon (e.g., pages in a sequential scan)

Partitioned buffer pools

Separate pools for tables, indexes, logs, etc.

36

BUFFER MANAGEMENT IN PRACTICE

Page Prefetching

Ask disk space manager for a run of sequential pages
E.g., on request for Page 1, ask for Pages 2-5

Why does this help?

Amortise random I/0O overhead

Allow computation while 1/0 continues in background
(disk and CPU are “parallel devices")

37

WHY NOT USE THE OS?

Wait! Doesn't the filesystem (OS) manage buffers and pages too?

Yes, but:

DBMS requires ability to force flushing pages to disk in correct order
Required for recovery, as discussed later

DBMS has more information about query plans and access patterns of operators

Affects both page replacement and prefetching

Portability: different filesystem, different behaviour

The OS is not your friend!

38

39

SUMMARY

Buffer Manager

SQL Client

|
q

N
v

Mediator between storage and main memory Query Planning

Maps disk page IDs to RAM addresses

Operator Execution

Ensures each requested page is “pinned” in RAM

To be (briefly) manipulated in-memory

And then unpinned by the caller!

E Database j

’—----------
Qo e o — — — —— ————— —— — — —

f

Attempts to minimize “cache misses”

\

By replacing pages unlikely to be referenced

By prefetching pages likely to be referenced

	Slide 1
	Slide 2: Buffer Management
	Slide 3: Buffer Management
	Slide 4: Buffer Management: Page Request
	Slide 5: Buffer Management: Page Release
	Slide 6: Open Questions
	Slide 7: Buffer Manager State
	Slide 8: Proper Pin/Unpin Nesting
	Slide 9: Pin Implementation
	Slide 10: Unpin Implementation
	Slide 11: Advanced Questions
	Slide 12: Buffer Replacement Policies
	Slide 14: Least Recently Used (LRU)
	Slide 15: Least Recently Used (LRU)
	Slide 16: Clock Replacement Policy
	Slide 17: Clock Policy State: Explicit & Illustrated
	Slide 18: Clock Policy: Read Page 10
	Slide 19: Clock Policy: Read Page 10 (Cont.)
	Slide 20: Clock Policy: Read Page 10 (Cont.)
	Slide 21: Clock Policy: Read Page 10 (Cont.)
	Slide 22: Clock Policy: Read Page 10 (Cont.)
	Slide 26: Replacement Policies Can Fail
	Slide 27: Repeated Scan (LRU)
	Slide 28: Repeated Scan (LRU)
	Slide 29: Repeated Scan (LRU)
	Slide 30: Repeated Scan (LRU)
	Slide 31: Repeated Scan (LRU)
	Slide 32: Repeated Scan (MRU)
	Slide 33: Repeated Scan (MRU)
	Slide 34: Repeated Scan (MRU)
	Slide 35: Best Replacement Policy?
	Slide 36: Buffer Management in Practice
	Slide 37: Buffer Management in Practice
	Slide 38: Why Not Use the OS?
	Slide 39: Summary

