
18/01/2026

Advanced Database Systems
Spring 2026

Lecture #06:

Files, Pages, Records

R&G: Chapters 9.5-9.7

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

OVERVIEW: REPRESENTATIONS
2

sid name dept age

12344 Jones CS 18

12355 Smith Physics 23

12366 Gold CS 21

Record
12344 Jones CS 18

VarcharVarcharInt Int

Table

Database File

Page1 Page2

Page3 Page4

Page5 Page6

a b c d

Byte Representation of Record

Header

Record #1

Record #3

Record #2

Record #4

Slotted Page

2

OUTLINE

Storage Media

Disk Space Management

Buffer Management

File Layout

Page Layout

Record Layout

3

D is k S p a c e M a n a g e m e n t

B u f f e r M a n a g e m e n t

F i le s & In d e x M a n a g e m e n t

O p e r a t o r E x e c u t io n

Q u e r y P la n n in g

D a ta b a s e

S Q L C l ie n t

3

F ILES OF PAGES OF RECORDS

Tables stored as logical (database) files
A file consists of one or more pages

Each page contains one or more records

Pages are managed
On disk by the disk space manager

Pages read/written to physical disk/files

In memory by the buffer manager

Higher levels of DBMS only operate in memory

Page management is oblivious to their actual content

4

Database File

Header

Record #1

Record #3

Record #2

Record #4

Header

Record #1

Record #3

Record #2

Record #4

Header

Record #1

Record #3

Record #2

Record #4

Header

Record #1

Record #3

Record #2

Record #4

Header

Record #1

Record #3

Record #2

Record #4

Header

Record #1

Record #3

Record #2

Record #4

4

18/01/2026

F ILES OF PAGES OF RECORDS

Database file: A collection of pages, each containing a collection of records
Could span multiple OS files and even machines

API for higher levels of the DBMS:
Create/delete a file

Insert/delete/modify a record

Fetch a particular record by record ID

Record ID = (page ID, location on page)

Scan all records

possibly with a predicate on the desirable records

5

Disk Space Management

Buf fer Management

F i les & Index Management

Operator Execut ion

Query P lann ing

Database

SQL C l ient

5

DB F ILE ORGANISATION

Method of arranging a file of records
At this point in the hierarchy, we do not care what is page format

Different types exist, each ideal for some situations & not so good in others:
Heap Files

Records placed arbitrarily across pages

Sorted Files

Pages and records are in sorted order

Index Files

B+ trees, hash-based files

May contain records or point to records in other files

6

6

HEAP F ILE
Most important type of files in a database

Collection of records in no particular order
Not to be confused with “heap” data-structure

As file shrinks/grows, pages allocated/deallocated

To support record level operations, we must
Keep track of the pages in a file

Keep track of free space on pages

Keep track of the records on a page

7

7

HEAP F ILE: L INKED L IST

Doubly linked lists of pages
Header page allocated when the file is created

Header page ID stored in the system catalog

Initially both page lists are empty

Each page keeps track of
the free space in itself

Easy to implement, but
Most pages end up in the free space list

Finding a page with sufficient empty space may search many pages

8

Data
Page

Data
Page

Data
Page

Header

full data pages

pages w/ free space

Data
Page

8

18/01/2026

HEAP F ILE: PAGE D IRECTORY

Directory = set of special pages storing metadata about data pages

Each directory entry
Identifies a data page & records #free bytes on it

Free space search more efficient
Far fewer pages read to find a page to fit a record

One header page reveals free space of many pages

Header pages accessed often ⇒ likely in cache

Small memory overhead to host the directory

9

Data
Page

Data
Page

Data
Page

Page Directory

Header

9

OUTLINE

Storage Media

Disk Space Management

Buffer Management

File Layout

Page Layout

Record Layout

10

D is k S p a c e M a n a g e m e n t

B u f f e r M a n a g e m e n t

F i le s & In d e x M a n a g e m e n t

O p e r a t o r E x e c u t io n

Q u e r y P la n n in g

D a ta b a s e

S Q L C l ie n t

10

PAGE LAYOUT
How to organize the data stored inside the page

Header stores metadata about the page
page ID, #records, free space, next/prev pointers, etc.

Find record by record ID, insert, delete records
record ID (rid) = (page ID, offset in page)

Things to consider:
Record length? Fixed or variable

Page packing? Packed or unpacked

11

Data

Header

Page

11

F IXED-LENGTH RECORDS

Records are made up of multiple fields
Fields = values for columns in a table

We have fixed-length records when field lengths are consistent
The first field always has N bytes, the second field always has M bytes, etc.

⇒ Record lengths are fixed
Every record is always the same number of bytes

Notice that the implication might not be true the other way

We can store fixed-length records in two ways: packed and unpacked

12

12

18/01/2026

F IXED-LENGTH RECORDS, PACKED

No gaps between records

Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position – 1) * sizeof (Record)

13

Page

Header

Record ID:
(Page 2, 3)

records = 4

C D

A

Free Space

B

Unused space

Note:
Data is always stored in linear order
For presentation, we “wrap around” the linear order into a rectangle

13

F IXED-LENGTH RECORDS, PACKED

No gaps between records

Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position – 1) * sizeof (Record)

Insert record

Just append a new record to the end

sizeof (Header) + # records * sizeof (Record)

14

Page

Header

Record ID:
(Page 2, 5)

records = 4

C D

A

Free Space

E

B

Unused space

records = 5

14

F IXED-LENGTH RECORDS, PACKED

No gaps between records

Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position – 1) * sizeof (Record)

Delete record

Move the last record to the emptied slot

But this changes the last record’s ID!

Not always desirable

Updating record ID pointers could be expensive if they’re in other files

15

Page

Header

records = 4

C D

A

Free Space

E

Unused space

15

F IXED-LENGTH RECORDS, PACKED

No gaps between records

Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position – 1) * sizeof (Record)

Delete record

Move the last record to the emptied slot

But this changes the last record’s ID!

Not always desirable

Updating record ID pointers could be expensive if they’re in other files

16

Page

Header

records = 4

C D

A

Free Space

Unused space

E

Record ID:
(Page 2, 2)

16

18/01/2026

FIXED-LENGTH RECORDS, UNPACKED (BITMAP)

Allow gaps between records

Record ID = (page ID, position in page)

Use a bitmap to keep track of where the gaps are

Insert record

Find first empty slot by scanning the bitmap

Delete record

Clear bit in the bitmap

17

Page

Header

Record ID:
(Page 2, 3)

C D

A

Free Space

E

B itm ap

17

FIXED-LENGTH RECORDS, UNPACKED (FREE LIST)

Alternative to using bitmap

Link all free slots into a free list

Each link points to the beginning of a free slot, last is null

Insert record

Insert into slot pointed by head of free list

Set next free slot as new head

Delete record

Set slot of deleted record as new head

18

Page

Header

C D

A

Free Space

E

Free list

18

FIXED-LENGTH RECORDS, UNPACKED (FREE LIST)

Alternative to using bitmap

Link all free slots into a free list

Each link points to the beginning of a free slot, last is null

Insert record

Insert into slot pointed by head of free list

Set next free slot as new head

Delete record

Set slot of deleted record as new head

Example: after deleting record C

19

Page

Header

D

A

Free Space

E

Free list

19

VARIABLE-LENGTH RECORDS

Variable-length records may not have field lengths consistent
E.g.: The third field may take 0 to 4 bytes

How do we know where each record begins?

What happens when we add and delete records?

20

Header

Page

A B

C

20

18/01/2026

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the
records’ starting position offsets

Record ID = (page ID, slot ID)

Header keeps track of:
The number of used slots

The offset of the last slot used

Records stored at the end of page

21

Header

Record A

Record C

Record B

Record D

Fixed/Var-length records

Slot directory

21

SLOTTED PAGES

Records can be moved without changing rid

Delete record
Set slot offset to -1, delete slot only if last

Move records to fill up the hole or
defragment space periodically

Insert record
Find a slot with offset -1 or create if none

Allocate just the right amount of space

Defragment if not enough free space

22

Header

Record A

Record C

Record B

Record D

Fixed/Var-length records

Slot directory

22

OUTLINE

Storage Media

Disk Space Management

Buffer Management

File Layout

Page Layout

Record Layout

23

D is k S p a c e M a n a g e m e n t

B u f f e r M a n a g e m e n t

F i le s & In d e x M a n a g e m e n t

O p e r a t o r E x e c u t io n

Q u e r y P la n n in g

D a ta b a s e

S Q L C l ie n t

23

RECORD LAYOUT
Relational model

Each record in table has some fixed type

We do not need to store metadata about the schema
Information about field types is stored in the system catalog
System catalog is just another set of tables

Goals:
Records should be compact in memory & disk format
Fast access to fields (why?)

Easy case: Fixed-length fields

Interesting case: Variable-length fields

24

24

18/01/2026

RECORD LAYOUT: F IXED-LENGTH RECORDS
25

a b c

Each field has a fixed length

Direct access to record fields
Done via arithmetic (fast)

Each record can have a header storing metadata
E.g., bitmap for NULL values

No need to store information about the schema

d

4B 2B 8B 2B

Fixed field lengths

Base address
Base address + 6B

25

VARIABLE-LENGTH RECORDS

Some fields have variable length

Two ways to store variable length records:

1. Fields delimited by special symbols
Access to fields requires a scan of the record

Special symbols in fields require “escaping”

26

a b c d $$ $$

26

VARIABLE-LENGTH RECORDS

2. Array of field offsets
Direct access to fields & no “escaping”

Useful for fixed-length records too

Clean way of dealing with NULL values

Aside: this is actually not sufficient for storing NULL values for all types

Cannot distinguish between empty string (“”) and NULL

Need some extra metadata (e.g. bitmap in record header or special char in field),
which varies widely between different DBMSs

27

a b c d

27

VARIABLE-LENGTH RECORDS

Possible implementation

Fields are stored in order

Variable-length fields represented by fixed size (offset, length), with actual data stored
after all fixed-length fields

NULL values represented by NULL-value bitmap

28

Record

12344 Jones CS 18

VarcharVarcharBigInt Int

12344 21, 5 26, 2 18 Jones CS
0Bytes 8 12 16 20 21 26 28

Byte Representation of Record

NULL Bitmap (stored in 1 byte)

0000

28

18/01/2026

SUMMARY

DB file contains pages, and records within pages

Heap files: unordered records organized with directories

Page layout
Fixed-length packed and unpacked

Variable length records in slotted pages

Variable-length record layout
Direct access to i-th field and NULL values

29

sid name dept age

12344 Jones CS 18

12355 Smith Physics 23

12366 Gold CS 21

Record
12344 Jones CS 18

VarcharVarcharInt Int

Table

Database File

Page1 Page2

Page3 Page4

Page5 Page6

a b c d

Byte Representation of Record

Header

Record #1

Record #3

Record #2

Record #4

Slotted Page

29

