THE UNIVERSITY

of EDINBURGH OVERVIEW: REPRESENTATIONS

Record Table
Advanced Database Systems [Crzso Tones | e [18 | ¢ e et s
Spriﬂg 2026 Int Varchar Varchar Int 122:‘5‘ -ST:l‘i: E:ySiCS li

* 12366 Gold CS 21

Byte Representation of Record *
Lecture #06: [ty ol [PR <l dp Database File
. O] otted Page

Files, Pages, Records = o W]

Record #4 Record #3

Record #2 Record #1

R&G: Chapters 9.5-9.7

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1 2
3
Storage Media ‘I SQL Client L Tables stored as logical (database) files
) ['] \‘, A file consists of one or more pages
Disk Space Management 1 Query Planning i)
! H Each page contains one or more records
1 . 1
! ! ages are manage
File Layout i IS & Ml RIMEEOUEIE i On disk by the disk space manager
i Buffer Management i Pages read/written to physical disk/files Datab Fil
Page Layout i i In memory by the buffer manager arabase tie
| Disk Space Management 1 Higher levels of DBMS only operate in memory
Record Layout i _—]
1 1
I‘ 'I Page management is oblivious to their actual content
N e e e e e e e e e e o e e e o e e e o R4

FILES OF PAGES OF RECORDS

Database file: A collection of pages, each containing a collection of records

Could span multiple OS files and even machines

) 1 SQL Client |

API for higher levels of the DBMS: e)

. | T |

Create/delete a file H i

| -

Insert/delete/modify a record ! BeTator Xecuon |

1 i 1

Fetch a particular record by record ID ! i

1 1

Record ID = (page ID, location on page) ! |

Scan all records i E
1

possibly with a predicate on the desirable records | i

] Database i

N J

DB FILE ORGANISATION

Method of arranging a file of records

At this point in the hierarchy, we do not care what is page format

Different types exist, each ideal for some situations & not so good in others:
Heap Files
Records placed arbitrarily across pages
Sorted Files
Pages and records are in sorted order
Index Files
B+ trees, hash-based files

May contain records or point to records in other files

HEAP FILE

Most important type of files in a database

Collection of records in no particular order

Not to be confused with “heap” data-structure
As file shrinks/grows, pages allocated/deallocated

To support record level operations, we must
Keep track of the pages in a file
Keep track of free space on pages

Keep track of the records on a page

HEAP FILE: LINKED LIST

Doubly linked lists of pages
Header page allocated when the file is created
Header page ID stored in the system catalog full data pages
Initially both page lists are empty

Each page keeps track of
the free space in itself Header

Easy to implement, but

pages w/ free space

Most pages end up in the free space list

Finding a page with sufficient empty space may search many pages

HEAP FILE: PAGE DIRECTORY

Directory = set of special pages storing metadata about data pages

Each directory entry

Identifies a data page & records #free bytes on it

Free space search more efficient

Far fewer pages read to find a page to fit a record
One header page reveals free space of many pages

Header pages accessed often = likely in cache

Data
Page

Small memory overhead to host the directory

Page Directory

OUTLINE

Storage Media SQL Client

\
—
4

Y

Disk Space Management ! Query Planning i
1 1

1 . 1

Buffer Management i O G I i
1

1 1

. 1 Files & Index Management [
Fle Layout , |
E Buffer Management E

Page Layout i i
1 1

I Disk Space Management]

Record Layout i —— I
1 1

= :

\ 1

N\, ’

10

9
11
PAGE LAYOUT
How to organize the data stored inside the page
Header
Header stores metadata about the page
page ID, #records, free space, next/prev pointers, etc.
Find record by record ID, insert, delete records
record ID (rid) = (page ID, offset in page)
Things to consider:
Record length? Fixed or variable Page
Page packing? Packed or unpacked
11

FIXED-LENGTH RECORDS

Records are made up of multiple fields

Fields = values for columns in a table

We have fixed-length records when field lengths are consistent
The first field always has N bytes, the second field always has M bytes, etc.

= Record lengths are fixed
Every record is always the same number of bytes

Notice that the implication might not be true the other way

We can store fixed-length records in two ways: packed and unpacked

12

No gaps between records
Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position - 1) * sizeof (Record)

/—'

Record ID:
(Page 2, 3)

Note:
Data is always stored in linear order
For presentation, we “wrap around” the linear order into a rectangle

FIXED-LENGTH RECORDS, PACKED

Header

records = 4 | A —

:|B »

Free Space

Page /

Unused space

13

No gaps between records
Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

FIXED-LENGTH RECORDS, PACKED

Header

records = 4

sizeof (Header) + (position - 1) * sizeof (Record)

Delete record
Move the last record to the emptied slot
But this changes the last record's ID!
Not always desirable

Updating record ID pointers could be expensive if they're in other files

Unused space

No gaps between records
Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position - 1) * sizeof (Record)

Insert record
Just append a new record to the end

sizeof (Header) + # records * sizeof (Record)

Record ID:
(Page 2, 5)

FIXED-LENGTH RECORDS, PACKED

Header

records =5 | A —

Free Space

Page /

Unused space

14

No gaps between records
Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:
sizeof (Header) + (position - 1) * sizeof (Record)

Delete record
Record ID:

Move the last record to the emptied slot (Page 2, 2)

But this changes the last record's ID!
Not always desirable

Updating record ID pointers could be expensive if they're in other files

15

FIXED-LENGTH RECORDS, PACKED

Header

records = 4 | A —

| £

Page }

Unused space

16

FIXED-LENGTH RECORDS, UNPACKED (BITMAP)

Allow gaps between records Header

o sitmap X[IXIXIX[T T]| A »—
Record ID = (page ID, position in page)

Use a bitmap to keep track of where the gaps are

/—'

Record ID:
(Page 2, 3) Free

Insert record

Find first empty slot by scanning the bitmap

Space

Delete record
Clear bit in the bitmap
Page

17

19

FIXED-LENGTH RECORDS, UNPACKED (FREE LIST)

Alternative to using bitmap Header

Free list A —
Link all free slots into a free list

Each link points to the beginning of a free slot, last is null

Insert record

Insert into slot pointed by head of free list
Set next free slot as new head

Free Snace

Delete record

Set slot of deleted record as new head
Example: after deleting record C

19

18

FIXED-LENGTH RECORDS, UNPACKED (FREE LIST)

Alternative to using bitmap Header

Free list
Link all free slots into a free list

Each link points to the beginning of a free slot, last is null

Insert record

Insert into slot pointed by head of free list
Set next free slot as new head

Free Znace

Delete record

Set slot of deleted record as new head

Page
=
18
20
VARIABLE-LENGTH RECORDS
Variable-length records may not have field lengths consistent
E.g.: The third field may take 0 to 4 bytes
How do we know where each record begins?
Header

What happens when we add and delete records?

A —s |B—

——

N

Page

20

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the
records’ starting position offsets
Record ID = (page ID, slot ID)

Header keeps track of:
The number of used slots

The offset of the last slot used

Records stored at the end of page

21

SLOTTED PAGES

Records can be moved without changing rid

Slot directory Delete record

Header Set slot offset to -1, delete slot only if last

Move records to fill up the hole or
defragment space periodically

Insert record

Record D| | Record C Find a slot with offset -1 or create if none
Record B Record A Allocate just the right amount of space
T Defragment if not enough free space

Fixed/Var-length records

21

22

Slot directory

Header

Record D Record C

Record B Record A

Fixed/Var-length records

22

OUTLINE

Storage Media

Disk Space Management
Buffer Management

File Layout

Page Layout

Record Layout

o B B

23

RECORD LAYOUT

Relational model
Each record in table has some fixed type

SQL Client

L—
4

24

Y
Query Plannin i
! We do pot need to store metadata about the schema
i Information about field types is stored in the system catalog
] System catalog is just another set of tables
Files & Index Management !
! Goals:
Buffer Management i Records should be compact in memory & disk format
1 i ?
Disk Space Management | Fast access to fields (why?)
1
— ! Easy case: Fixed-length fields
—Database i
J Interesting case: Variable-length fields

23

24

25

RECORD LAYOUT: FIXED-LENGTH RECORDS

Base address + 6B

Each field has a fixed length

Base address
Direct access to record fields \ /

Done via arithmetic (fast) a b c d

4B 2B 8B 2B

Fixed field lengths

Each record can have a header storing metadata

E.g., bitmap for NULL values

No need to store information about the schema

VARIABLE-LENGTH RECORDS

Some fields have variable length
Two ways to store variable length records:

1. Fields delimited by special symbols

Access to fields requires a scan of the record

ab c

| |
Q
| |

Special symbols in fields require “escaping”

25

26

27

VARIABLE-LENGTH RECORDS

2. Array of field offsets

Direct access to fields & no “escaping”

Useful for fixed-length records too

Clean way of dealing with NULL values

Aside: this is actually not sufficient for storing NULL values for all types
Cannot distinguish between empty string () and NULL

Need some extra metadata (e.g. bitmap in record header or special char in field),
which varies widely between different DBMSs

26

VARIABLE-LENGTH RECORDS

Possible implementation
Fields are stored in order

Variable-length fields represented by fixed size (offset, length), with actual data stored
after all fixed-length fields

NULL values represented by NULL-value bitmap

Record
l 12344 [Jones CS; [18 ‘
Bigint Varchar Varchar Int

/ NULL Bitmap (stored in 1 byte)

) 0000
Byte Representation of Record \ /

12344 [21,52, 2] 18 || Jones | cs |
Bytes 0 8 12 16 2021 26 28

27

28

28

29

SUMMARY

DB file contains pages, and records within pages

Heap files: unordered records organized with directories

Record
Page layout T
) o varchar vachar ¢
Fixed-length packed and unpacked
\
Variable length records in slotted pages Byte Representation of Record

Slotted Page

Variable-length record layout

Direct access to i-th field and NULL values i

29

