N9 THE UNIVERSITY

\#N/: of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #06:
Files, Pages, Records

R&G: Chapters 9.5-9.7

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

OVERVIEW: REPRESENTATIONS

Record Table
1 2344 JoneS CS 1 8 31d name dept age
Int Varchar Varchar Int 12344 Jones CS 18
12355 Smith Physics 23
* 12366 Gold CS 21
Byte Representation of Record *
1t Database File
1 Slotted Page N
Header |¢1%

Page1 Page2

Page3 Paged
\ 4] Vr

Record #4| | Record #3

Page5 Page6

Record #2 Record #1

OUTLINE

Storage Media

Disk Space Management
Buffer Management

File Layout

Page Layout

Record Layout

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

\

SQL Client

Query Planning

Operator Execution

Files & Index Management

Buffer Management

-------------'

Disk Space Management

E Database j

F
/

FILES OF PAGES OF RECORDS

Tables stored as logical (database) files C m=a e
A file consists of one or more pages e =
Each page contains one or more records o TR e HHE

RRRRRRRR = kecord #4]| record #3

p d | |

agesare manage Header [ylglalel] Header [ylpfelgl T
. . 1] 1]
On disk by the disk space manager | |[&E T |[= om
hecord #2 | Fecord #1 hecord #2 | Fecord #1
U

Pages read/written to physical disk/files
In memory by the buffer manager Database File

Higher levels of DBMS only operate in memory

Page management is oblivious to their actual content

FILES OF PAGES OF RECORDS

Database file: A collection of pages, each containing a collection of records

Could span multiple OS files and even machines

API for higher levels of the DBMS:

Create/delete afile
Insert/delete/modify a record

Fetch a particular record by record ID
Record ID = (page ID, location on page)

Scan all records

possibly with a predicate on the desirable records

\

,_----------

SQL Client

| -

4

Query Planning
Operator Execution
Files & Index Management
Buffer Management

Disk Space Management

E Database j

----------'

DB FILE ORGANISATION

Method of arranging a file of records

At this point in the hierarchy, we do not care what is page format

Different types exist, each ideal for some situations & not so good in others:
Heap Files
Records placed arbitrarily across pages
Sorted Files
Pages and records are in sorted order

Index Files
B+ trees, hash-based files

May contain records or point to records in other files

HEAP FILE

Most important type of files in a database

Collection of records in no particular order

Not to be confused with “heap” data-structure

As file shrinks/grows, pages allocated/deallocated

To support record level operations, we must
Keep track of the pagesin afile
Keep track of free space on pages

Keep track of the records on a page

HEAP FILE: LINKED LIST

Doubly linked lists of pages

Header page allocated when the file is created
Header page ID stored in the system catalog full data pages
Initially both page lists are empty

Each page keeps track of
the free space in itself Header

Easy to implement, but

pages w/ free space

Most pages end up in the free space list

Finding a page with sufficient empty space may search many pages

HEAP FILE: PAGE DIRECTORY

Directory = set of special pages storing metadata about data pages

Each directory entry

Identifies a data page & records #free bytes on it

Free space search more efficient

Data
Page

Far fewer pages read to find a page to fit a record

One header page reveals free space of many pages

Header pages accessed often = likely in cache

Small memory overhead to host the directory

" e
N o o -

————————————————

Page Directory

OUTLINE

Storage Media

Disk Space Management
Buffer Management

File Layout

Page Layout

Record Layout

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

\

SQL Client

Query Planning

Operator Execution

Files & Index Management

Buffer Management

-------------'

Disk Space Management

E Database j

F
/

10

PAGE LAYOUT

How to organize the data stored inside the page

Header stores metadata about the page

page ID, #records, free space, next/prev pointers, etc.

Find record by record ID, insert, delete records
record ID (rid) = (page ID, offset in page)

Things to consider:

Record length? Fixed or variable

Page packing? Packed or unpacked

Header

Page

11

FIXED-LENGTH RECORDS

Records are made up of multiple fields

Fields = values for columns in a table

We have fixed-length records when field lengths are consistent
The first field always has N bytes, the second field always has M bytes, etc.

= Record lengths are fixed
Every record is always the same number of bytes

Notice that the implication might not be true the other way

We can store fixed-length records in two ways: packed and unpacked

12

13

FIXED-LENGTH RECORDS, PACKED

No gaps between records Header
records = 4 ‘ A —

Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof(Header) + (position - 1) * sizeof (Record) /

Record ID:
(Page 2, 3) Space

Page /
Note:

Data is always stored in linear order
Unused space

For presentation, we “wrap around” the linear order into a rectangle

14

FIXED-LENGTH RECORDS, PACKED

No gaps between records Header
records = 5 ‘ A —

Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position - 1) * sizeof (Record)

Insert record

Space

sizeof(Header) + # records * sizeof(Record) (Page 2, 5) @

Page /

Unused space

Just append a new record to the end Record ID:

15

FIXED-LENGTH RECORDS, PACKED

No gaps between records Header

records = 4
Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position - 1) * sizeof (Record)

Delete record
Space

Page /

Unused space

Move the last record to the emptied slot

But this changes the last record’s ID!
Not always desirable

Updating record ID pointers could be expensive if they're in other files

16

FIXED-LENGTH RECORDS, PACKED

No gaps between records Header
records = 4 ‘ A —

Record ID = (page ID, position in page)

Easy to compute the offset of a record in the page:

sizeof (Header) + (position - 1) * sizeof (Record)

Delete record
Record ID: Space

Move the last record to the emptied slot (Page 2, 2) N\

Not always desirable Page /

But this changes the last record’s ID!

Updating record ID pointers could be expensive if they're in other files

Unused space

17

FIXED-LENGTH RECORDS, UNPACKED (BITMAP)

Allow gaps between records Header

Bitmap |X]| [X[X|X] | | |

Record ID = (page ID, position in page)

Use a bitmap to keep track of where the gaps are

Insert record

Record ID:
(Page 2, 3) Space

Delete record @

Clear bit in the bitmap
Page

Find first empty slot by scanning the bitmap

8

FIXED-LENGTH RECORDS, UNPACKED (FREE LIST)

Alternative to using bitmap Header

Free list
Link all free slots into a free list

Each link points to the beginning of a free slot, last is null

Insert record

Insert into slot pointed by head of free list

Set next free slot as new head Znace

Delete record @

Set slot of deleted record as new head

9

FIXED-LENGTH RECORDS, UNPACKED (FREE LIST)

Alternative to using bitmap Header

Free list
Link all free slots into a free list

Each link points to the beginning of a free slot, last is null

o

Set next free slot as new head Frec Svnace
1

Delete record @

Set slot of deleted record as new head

Insert record

Insert into slot pointed by head of free list

Example: after deleting record C 1

20

VARIABLE-LENGTH RECORDS

Variable-length records may not have field lengths consistent
E.g.: The third field may take 0 to 4 bytes

How do we know where each record begins?

What happens when we add and delete records? A e— | B—

Page

SLOTTED PAGES

Most common layout scheme is called slotted pages

Slot directory maps “slots” to the
records’ starting position offsets

Record ID = (page ID, slot ID)

Header keeps track of:

The number of used slots
The offset of the last slot used

Records stored at the end of page

Slot directory

Header

Record D Record C

Record B Record A

Y
Fixed/Var-length records

21

SLOTTED PAGES

Records can be moved without changing rid

Delete record
Set slot offset to -1, delete slot only if last

Move records to fill up the hole or
defragment space periodically

Insert record
Find a slot with offset -1 or create if none
Allocate just the right amount of space

Defragment if not enough free space

Slot directory

Header

Record D Record C

Record B Record A

Y
Fixed/Var-length records

22

OUTLINE

Storage Media

Disk Space Management
Buffer Management

File Layout

Page Layout

Record Layout

Y

il HEN I NN SN N SN S SN S S S S S S B S S S N . S . . E—,

\

SQL Client

Query Planning

Operator Execution

Files & Index Management

Buffer Management

-------------'

Disk Space Management

E Database j

F
/

23

RECORD LAYOUT

Relational model
Each record in table has some fixed type

We do not need to store metadata about the schema

Information about field types is stored in the system catalog
System catalog is just another set of tables

Goals:

Records should be compact in memory & disk format
Fast access to fields (why?)

Easy case: Fixed-length fields

Interesting case: Variable-length fields

24

RECORD LAYOUT: FIXED-LENGTH RECORDS

Each field has a fixed length Base address + 6B
Base address
Direct access to record fields \ /
Done via arithmetic (fast) a b C d

Each record can have a header storing metadata |4B 2B 8B ZB'
Y
Fixed field lengths

E.g., bitmap for NULL values

No need to store information about the schema

25

VARIABLE-LENGTH RECORDS

Some fields have variable length
Two ways to store variable length records:

1. Fields delimited by special symbols

Access to fields requires a scan of the record

Special symbols in fields require “escaping”

26

VARIABLE-LENGTH RECORDS

2. Array of field offsets

Direct access to fields & no “escaping”

Useful for fixed-length records too

Clean way of dealing with NULL values

Aside: this is actually not sufficient for storing NULL values for all types

Cannot distinguish between empty string (*) and NULL

Need some extra metadata (e.g. bitmap in record header or special char in field),
which varies widely between different DBMSs

27

VARIABLE-LENGTH RECORDS

Possible implementation
Fields are stored in order

Variable-length fields represented by fixed size (offset, length), with actual data stored
after all fixed-length fields

NULL values represented by NULL-value bitmap

Record
12344 Jones CS 18 .
Bigint Varchar Varchar Int / NULL Bitmap (stored in 1 byte)
Byte Representation of Record o
12344 21, 5 | 26, 2 18 Jones CS

Bytes O 8 12 16 20 21 26 28

SUMMARY

DB file contains pages, and records within pages

Heap files: unordered records organized with directories

sid

12344

Table

29

name dept age

Jones CS

18

12355

Smith Physics

23

12366

Gold CS

21

\

Database File

Ve

Record
Page |ayOUt | 12344 | Jones | cs [18 |
Fixed-length packed and unpacked " V* o
Variable length records in slotted pages Byte Representation of Record
l{lfl il Slotted Page
eoser [RRRITIEN]
Variable-length record layout T il
Direct access to i-th field and NULL values e s

~\

	Slide 1
	Slide 2: Overview: Representations
	Slide 3: Outline
	Slide 4: Files of Pages of Records
	Slide 5: Files of Pages of Records
	Slide 6: DB File Organisation
	Slide 7: Heap File
	Slide 8: Heap File: Linked List
	Slide 9: Heap File: Page Directory
	Slide 10: Outline
	Slide 11: Page Layout
	Slide 12: Fixed-Length Records
	Slide 13: Fixed-Length Records, Packed
	Slide 14: Fixed-Length Records, Packed
	Slide 15: Fixed-Length Records, Packed
	Slide 16: Fixed-Length Records, Packed
	Slide 17: Fixed-Length Records, Unpacked (Bitmap)
	Slide 18: Fixed-Length Records, Unpacked (Free List)
	Slide 19: Fixed-Length Records, Unpacked (Free List)
	Slide 20: Variable-Length Records
	Slide 21: Slotted Pages
	Slide 22: Slotted Pages
	Slide 23: Outline
	Slide 24: Record Layout
	Slide 25: Record Layout: Fixed-Length Records
	Slide 26: Variable-Length Records
	Slide 27: Variable-Length Records
	Slide 28: Variable-Length Records
	Slide 29: Summary

