THE UNIVERSITY
of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #07:
Storage Models & Compression

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

DATABASE WORKLOADS

On-Line Transactional Processing (OLTP)

Fast, simple operations that handle small amounts of data per transaction

On-Line Analytical Processing (OLAP)

Complex queries that read large amounts of data to compute aggregates

Hybrid Transactional and Analytical Processing (HTAP)
Combines OLTP and OLAP on the same database instance

Real-time analytics on live operational data w/o moving data between systems
(e.g., real-time fraud detection)

OLTP: ON-LINE TRANSACTIONAL PROCESSING

High volumes of real-time transactions SECEGIRUSLIRRS
FROM pages AS P

INNER JOIN revision AS R
amount of data related to a single entity ON P.latest = R.revID

Simple queries that read/update a small

WHERE P.pageID = ?

Focused on operational tasks

E.g., order processing, payments, inventory UPDATE useracct
SET lastLogin = NOW(),
Key features hostname = ?

WHERE userID = ?

Short queries

High concurrency INSERT INTO revisions
VALUES (?,7,7?)

Balanced read-write operations

OLAP: ON-LINE ANALYTICAL PROCESSING

Designed for data analysis and reporting SELECT COUNT(U.lastlLogin),
EXTRACT (MONTH FROM
U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE ‘%.gov’

GROUP BY EXTRACT(
E.g., trend analysis, decision-making insights MONTH FROM U.lastlLogin)

Complex queries that read large portions of

the database spanning multiple entities

Get business insights from historical data

OLAP runs on data collected from OLTP apps

Key features
Long-running queries over many tables
Read-heavy
Aggregated data

OBSERVATION

The relational model does not require the DMBS to store all
tuple attributes in a single page

This may not actually be the best layout for some workloads

The DBMS can store records in different ways that are better
for either OLTP or OLAP workloads

STORAGE MODELS

Storage model specifies how tuples are physically arranged on disk
and in memory

Can have different performance characteristics based on the target workload
(OLTP vs. OLAP)

Influences the design choices of the rest of the DBMS

Common models
Row Storage Model
Column Storage Model
Hybrid Storage Model (PAX)

Row STORAGE MODEL

Stores all attributes of a tuple (row) contiguously in memory and on disk

Ideal for OLTP workloads with frequent individual entity access and updates

Header userID wuserName userPass hostname lastlLogin

Header userID wuserName userPass hostname lastlLogin
Header userID wuserName userPass hostname lastlLogin

Header userID wuserName userPass hostname lastlLogin

Record #1
Record #2

Row STORAGE MODEL

Stores all attributes of a tuple (row) contiguously in memory and on disk
Fixed-length and variable-length attributes stored contiguously in a single slotted page

Record ID = (page ID, slot ID) is how the DBMS uniquely identifies a physical tuple

Row-Store Disk Page

Header userID userName userPass hostname lastlLogin
Header userID userName userPass hostname lastlLogin
Header userID userName userPass hostname lastlLogin

Header userID userName userPass hostname lastlLogin

ROw STORAGE MODEL

* /2

¥

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

Touches small amounts of data

Row-Store Disk Page

Header userID userName userPass hostname lastlLogin
Header userID wuserName userPass hostname lastlLogin
Header userID wuserName userPass hostname lastlLogin
Header userID wuserName userPass hostname lastlLogin

Row STORAGE MODEL

SELECT COUNTluilastLoginI, Scans entire relation

EXTRACT (MONTH FROMlU.lastLogin} AS month

FROM useracct AS U

weRE[D_hostrane] LIKE % goy’
GROUP BY EXTRACT(MONTH FROMlU.lastLoginb

Row-Store Disk Page

Header B userID userName userPass @l hostname | lastlLogin
Header B userID userName userPass @l hostname l§ lastlLogin
Header B userID userName userPass @l hostname | lastlLogin
Header B userID userName userPass @l hostname l§ lastlLogin

Useless Data

Most read data not needed

10

9
11
Advantages
Fast access to all attributes of a single tuple. Fast inserts, updates, and deletes
Ideal for OLTP workloads involving individual tuple operations
Can use clustered indices in variant A for storing data covered later this week
Disadvantages
Reading entire rows for queries involving only a few attributes leads to unnecessary 1/0
Not good for reading large portions of the table and/or a subset of the attributes (OLAP)
Terrible memory locality in access patterns
Not ideal for compression because of multiple value domains within a single page
11

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Ideal for OLAP workloads where read-only queries perform large scans
over a subset of the table’s attributes

DMBS is responsible for combining/splitting a tuple’s attributes when
reading/writing

12

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Store attribute and metadata (e.g., nulls) in separate arrays of fixed-length values

Identify physical tuples using offsets into these arrays

Convert variable-length data into fixed-length values using dictionary compression

Header |userID || userName|| userPass
Header |userID || userName|| userPass
Header |userID || userName|| userPass

Header |userID || userName|| userPass

hostname || lastLogin
hostname || lastLogin
hostname || lastLogin

hostname || lastLogin

lastLogin

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Column-Store Disk Page

Header hostname hostname hostname
hostname hostname hostname hostname

hostname hostname hostname hostname

hostname hostname hostname hostname

hostname
hostname
hostname

hostname

13

14

COLUMNAR STORAGE MODEL

SELECT COUNT(U.lastLogin],

EXTRACT(month FROMlU.lastLoginl AS month

FROM useracct AS U
WHEREMLIKE ‘%.gov’

GROUP BY EXTRACT(month FROMlU‘lastLoginb

Column-Store Disk Page

Header hostname hostname hostname hostname
hostname hostname hostname hostname hostname
hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname
— — —

COLUMNAR STORAGE MODEL

Advantages

Reduces the amount of wasted I/0 because the DBMS only

reads the data that it needs (free projection pushdown)
Faster query processing because of increased cache locality

Better data compression

Disadvantages

Slow for point queries, inserts, updates, and deletes
because of tuple splitting / stitching

15

17

HYBRID STORAGE MODEL (PAX)

OLAP queries rarely access a single column in isolation

During query execution, the DBMS must get other columns and reconstruct the original tuple

Ideally, we want columnar benefits (compression, efficient processing)

without losing the speed of accessing related data together

Partition Attributes Across (PAX) is a hybrid storage model that

vertically partitions attributes within a database page
Examples: Parquet, ORC, and Arrow

The goal is to combine the performance benefits of columnar storage with
the spatial locality advantages of row storage

HYBRID STORAGE MODEL

Horizontally partition data into row groups

Vertically partition row groups into column chunks

Global metadata directory contains
offsets to the file's row groups

This is stored in the footer if the file is
immutable (Parquet, Orc). Why?

Each row group contains its own
metadata header about its contents

PAX File

ColA ColB ColC
a0 Row 0
al | bl Row 1
a2 Row 2
a3 -- Row 3
a4 [b4 Nl Rrow4
a5 [NE5N | Rows

-

~

Row Group 0

Row group metadata

Col A chunk

a0 a1 aZ_

Col B chunk | : Col C chunk

Row Group 1 Row group metadata
Col Achunk ; : Col Bchunk : i Col Cchunk
aadksl BB [EkEE

File metadata

18

19

PARQUET FILE FORMAT

Data organisation

/] column X chunk

Page 0

Page metadata
Repetition levels
Definition levels

Encoded values

Page 1

Parquet file
Row groups (default 128MB) Row group 0
Column chunks
Pages (default TMB)
Metadata (min, max, count)
Rep/def levels (for nested data) ;
Encoded values
Footer ;
File, row group, and column metadata
(e.g., schema, count, row group offsets) [Footer |

PARQUET FILE FORMAT

Columnar storage speeds up queries by reading only needed data

High compression reduces file size

21

Predicate pushdown speeds up queries by skipping irrelevant data based on statistics

Parallel processing: row groups enable distributed/parallel processing

Rich metadata: stores statistics, encoding info, schema (so parsing is fast)

Schema evolution: add/modify columns without rewriting the entire file

Widely used in big data platforms (Spark, Hive, Presto) and storage systems

20

21

22

COMPRESSION IN DBMS

Why compression?
Reduces storage and DRAM requirements
Improves system performance by increasing data per 1/0
Must be lossless > any lossy compression must be performed by application

Key trade-off
Speed vs, compression ratio = lower I/0 vs. higher CPU cost

Impact on query execution
Compressed pages reduce I/0 overheads
May increase CPU cost due to decompression
Sometimes queries can be run directly on compressed data

NAIVE COMPRESSION

Uses general-purpose algorithms (e.g., zlib, Snappy, Zstd)

Compresses data block by block without understanding its meaning
Decompression required before reading or modification = limits efficiency
Limited scope: only considers data given as input, not high-level semantics

Lower compression ratio on heterogeneous data

22

23

24

COLUMNAR COMPRESSION

Run-length encoding
Supress duplicates, e.g., 2, 2, 2, 3,4, 4, 4, 4, 4 = 2x3, 3x1, 4x5

Good for mostly sorted
integers or categorical data

Delta encoding
Encode differences, e.g., 2,3, 4,5 = 2, +1, +1, +1,
Pairs well with run-length encoding, e.g., 2, +1, +1, +1 = 2, +1x3

Good for mostly sorted
numeric data (floats)

Bit packing
Use fewer bits for short integers Good for limited

Pairs well with delta coding precision data

Dictionary encoding

Replace frequent values with smaller fixed-length codes Good for long,

Maintain a mapping from the codes to the original values frequent strings

23

DELTA ENCODING IN PARQUET

values: [100[101[101]102]101]101]102]101] 99 [100[105[107[114]116 119120 [121]
reference block 1 block 2
[101]101]102]101 101 102101 99 | [100[105]107[114116 119]120]121]
8 * 64bits values = 64 bytes deltas l 8 * 64bits values = 64 bytes

ERENENENCEENENEY

EEEENEAERERENEN

Source: “Efficient Data Storage for Analvtics with Apache Parguet2,0%, Julian Le Dem

24

25

25

https://facebook.github.io/zstd/
https://www.infoq.com/presentations/parquet/

26

DELTA ENCODING IN PARQUET

values: [100]101]101[102]101]101[102[101] 99 [100[105 [107114116 [119 [120]121]

reference block 1 block 2
[101]101]102]101 101]102]101 99 | [100]105[107 [114 [116]119]120]121]
8" 64bits values =64 bytes deltas l 8 * 64bits values = 64 bytes

Clol i JJofnf-]2] []s]z]7]2]s]1]1]

make deltas >0
min : _ min
l by subtracting min delta l

delta
(]2 s 2 s "z]a i [o]+[o] el [2]e]0]

26

28
Concept
Replaces frequent, long values (e.g., strings) with smaller fixed-length integers
Uses a dictionary from the integers to the original values
Most widely used compression technique in DBMSs
Benefits Original Data Compressed Data
Reduces data size City [code [value |
o . New York 1 1 New York
Eliminates variable-length data London 5 2 | e
Does not require pre-sorting Paris E[; 3 3 Paris
- New York 1 4 Tokyo
Improves storage & access efficiency p
okyo 4 .
Dictionary
London 2

27
values: [100[101]101[102]101101[102]101] 99 [100] 105107 114116 [119 [120[121] 17 x 8 = 136 bytes
reference block 1 block 2
[101 101 [102]101 101 102101] 99 | [100[105]107] 114116 119]120]121]
8* 64bits values =64 bytes deftas l 8 * 64bits values = 64 bytes
CTola[aTolaT2]) [1]s]2]7]2]a]+]1]
ke deltas > 0
':]"a l bryn:u:lraec;ia:;min d"e‘::‘a l
o] [s [e s [+ el [+ o]+ o]+ [s]i z]o]s]
maxbits = 2 maxbits = 3
[11T10 1 Jot [10 11 Jot Joo| [oo0]100]001]110]001 010]000]o000]
reference bits l packing bits l packing
[100] 2| [2][1110110110110100 | E
- 8* 2bits =2 bytes - 83 bits = 3 bytes
resutt: [100] -2 [2[1110110110110100 | 1 |3[000100001110001010000000] B+8+1+2+48+1+3=
31 bytes
27
29

CONCLUSION

Important to choose the right storage model for the target workload
OLTP = Row store
OLAP = Column store

Modern column stores use the hybrid storage model and data compression

Some compressions can be directly operated on, e.g., RLE and dictionary encoding

Apache Parquet
Columnar storage format optimised for efficient data compression and

fast analytical queries on large datasets

28

29

