
25/01/2026

Advanced Database Systems
Spring 2026

Lecture #07:

Storage Models & Compression

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

DATABASE WORKLOADS

On-Line Transactional Processing (OLTP)
Fast, simple operations that handle small amounts of data per transaction

On-Line Analytical Processing (OLAP)

Complex queries that read large amounts of data to compute aggregates

Hybrid Transactional and Analytical Processing (HTAP)

Combines OLTP and OLAP on the same database instance

Real-time analytics on live operational data w/o moving data between systems
(e.g., real-time fraud detection)

2

2

OLTP: ON-LINE TRANSACTIONAL PROCESSING

High volumes of real-time transactions
Simple queries that read/update a small
amount of data related to a single entity

Focused on operational tasks
E.g., order processing, payments, inventory

Key features

Short queries

High concurrency

Balanced read-write operations

3

SELECT P.*, R.*
 FROM pages AS P
 INNER JOIN revision AS R
 ON P.latest = R.revID
 WHERE P.pageID = ?

UPDATE useracct
 SET lastLogin = NOW(),
 hostname = ?
 WHERE userID = ?

INSERT INTO revisions
VALUES (?,?,?)

3

OLAP: ON-LINE ANALYTICAL PROCESSING
Designed for data analysis and reporting

Complex queries that read large portions of

the database spanning multiple entities

Get business insights from historical data
E.g., trend analysis, decision-making insights

OLAP runs on data collected from OLTP apps

Key features
Long-running queries over many tables

Read-heavy

Aggregated data

4

SELECT COUNT(U.lastLogin),
 EXTRACT(MONTH FROM
 U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(
 MONTH FROM U.lastLogin)

4

25/01/2026

OBSERVATION

The relational model does not require the DMBS to store all
tuple attributes in a single page

This may not actually be the best layout for some workloads

The DBMS can store records in different ways that are better
for either OLTP or OLAP workloads

5

5

STORAGE MODELS

Storage model specifies how tuples are physically arranged on disk
and in memory

Can have different performance characteristics based on the target workload
(OLTP vs. OLAP)

Influences the design choices of the rest of the DBMS

Common models
Row Storage Model

Column Storage Model

Hybrid Storage Model (PAX)

6

6

ROW STORAGE MODEL

Stores all attributes of a tuple (row) contiguously in memory and on disk

Ideal for OLTP workloads with frequent individual entity access and updates

7

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Record #1

Record #2
.
..

7

ROW STORAGE MODEL
8

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

Stores all attributes of a tuple (row) contiguously in memory and on disk

Fixed-length and variable-length attributes stored contiguously in a single slotted page

Record ID = (page ID, slot ID) is how the DBMS uniquely identifies a physical tuple

8

25/01/2026

ROW STORAGE MODEL
9

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ? Index

Touches small amounts of data

9

ROW STORAGE MODEL
10

SELECT COUNT(U.lastLogin),
 EXTRACT(MONTH FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(MONTH FROM U.lastLogin)

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Row-Store Disk Page

Scans entire relation

Most read data not needed

Useless Data

10

ROW STORAGE MODEL

Advantages
Fast access to all attributes of a single tuple. Fast inserts, updates, and deletes

Ideal for OLTP workloads involving individual tuple operations

Can use clustered indices in variant A for storing data covered later this week

Disadvantages
Reading entire rows for queries involving only a few attributes leads to unnecessary I/O

Not good for reading large portions of the table and/or a subset of the attributes (OLAP)

Terrible memory locality in access patterns

Not ideal for compression because of multiple value domains within a single page

11

11

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Ideal for OLAP workloads where read-only queries perform large scans
over a subset of the table’s attributes

DMBS is responsible for combining/splitting a tuple’s attributes when
reading/writing

12

12

25/01/2026

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Store attribute and metadata (e.g., nulls) in separate arrays of fixed-length values

Identify physical tuples using offsets into these arrays

Convert variable-length data into fixed-length values using dictionary compression

13

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

Header userID userName userPass hostname lastLogin

13

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

14

Header hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

Column-Store Disk Page

userID userID userID userID userID

userID userID userID userID userID

userID userID userID userID userID

userID userID userID userID userID

Column-Store Disk Page

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

Column-Store Disk Page

userId

lastLogin lastLogin lastLogin lastLogin lastLogin

lastLogin lastLogin lastLogin lastLogin lastLogin

lastLogin lastLogin lastLogin lastLogin lastLogin

lastLogin lastLogin lastLogin lastLogin lastLogin

Column-Store Disk Page

lastLogin

14

COLUMNAR STORAGE MODEL
15

Header hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

Column-Store Disk Page

userID userID userID userID userID

userID userID userID userID userID

userID userID userID userID userID

userID userID userID userID userID

Column-Store Disk Page

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

Column-Store Disk Page

lastLogin lastLogin lastLogin lastLogin lastLogin

lastLogin lastLogin lastLogin lastLogin lastLogin

lastLogin lastLogin lastLogin lastLogin lastLogin

lastLogin lastLogin lastLogin lastLogin lastLogin

Column-Store Disk Page

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(month FROM U.lastLogin)

15

COLUMNAR STORAGE MODEL

Advantages
Reduces the amount of wasted I/O because the DBMS only

reads the data that it needs (free projection pushdown)

Faster query processing because of increased cache locality

Better data compression

Disadvantages

Slow for point queries, inserts, updates, and deletes

because of tuple splitting / stitching

17

17

25/01/2026

HYBRID STORAGE MODEL (PAX)

OLAP queries rarely access a single column in isolation
During query execution, the DBMS must get other columns and reconstruct the original tuple

Ideally, we want columnar benefits (compression, efficient processing)

without losing the speed of accessing related data together

Partition Attributes Across (PAX) is a hybrid storage model that
vertically partitions attributes within a database page

Examples: Parquet, ORC, and Arrow

The goal is to combine the performance benefits of columnar storage with
the spatial locality advantages of row storage

18

18

HYBRID STORAGE MODEL

Horizontally partition data into row groups

Vertically partition row groups into column chunks

Global metadata directory contains
offsets to the file’s row groups

This is stored in the footer if the file is
immutable (Parquet, Orc). Why?

Each row group contains its own
metadata header about its contents

19

Col A Col B Col C
a0 b0 c0
a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5

Row 1
Row 2
Row 3
Row 4
Row 5

Row 0

Row Group 0

File metadata

Row group metadata

PAX File

a0 a1 a2

Col B chunk

b0 b1 b2

Col A chunk Col C chunk

c0 c1 c2

Row Group 1 Row group metadata

a3 a4 a5

Col B chunk

b3 b4 b5

Col A chunk Col C chunk

c3 c4 c5

19

PARQUET FILE FORMAT

Data organisation
Row groups (default 128MB)

Column chunks

Pages (default 1MB)

 Metadata (min, max, count)

 Rep/def levels (for nested data)

 Encoded values

Footer

 File, row group, and column metadata

 (e.g., schema, count, row group offsets)

20

Parquet file Column X chunk

Row group 0

Row group N

Footer

⠇

Column A chunk

⠇

⠇

Column B chunk

Column X chunk

Column Z chunk

Page 0

Page metadata

Repetition levels

Definition levels

Encoded values

Page 1

Page M

⠇

20

PARQUET FILE FORMAT

Columnar storage speeds up queries by reading only needed data

High compression reduces file size

Predicate pushdown speeds up queries by skipping irrelevant data based on statistics

Parallel processing: row groups enable distributed/parallel processing

Rich metadata: stores statistics, encoding info, schema (so parsing is fast)

Schema evolution: add/modify columns without rewriting the entire file

Widely used in big data platforms (Spark, Hive, Presto) and storage systems

21

21

25/01/2026

COMPRESSION IN DBMS
Why compression?

Reduces storage and DRAM requirements

Improves system performance by increasing data per I/O

Must be lossless à any lossy compression must be performed by application

Key trade-off
Speed vs. compression ratio à lower I/O vs. higher CPU cost

Impact on query execution
Compressed pages reduce I/O overheads

May increase CPU cost due to decompression

Sometimes queries can be run directly on compressed data

22

22

NAÏVE COMPRESSION

Uses general-purpose algorithms (e.g., zlib, Snappy, Zstd)

Compresses data block by block without understanding its meaning

Decompression required before reading or modification à limits efficiency

Limited scope: only considers data given as input, not high-level semantics

Lower compression ratio on heterogeneous data

23

23

COLUMNAR COMPRESSION

Run-length encoding
Supress duplicates, e.g., 2, 2, 2, 3, 4, 4, 4, 4, 4 ➔ 2x3, 3x1, 4x5

Delta encoding
Encode differences, e.g., 2, 3, 4, 5 ➔ 2, +1, +1, +1,
Pairs well with run-length encoding, e.g., 2, +1, +1, +1 ➔ 2, +1x3

Bit packing
Use fewer bits for short integers
Pairs well with delta coding

Dictionary encoding
Replace frequent values with smaller fixed-length codes
Maintain a mapping from the codes to the original values

24

Good for mostly sorted
integers or categorical data

Good for mostly sorted
numeric data (floats)

Good for limited
precision data

Good for long,
frequent strings

24

DELTA ENCODING IN PARQUET
25

Source: “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem

25

https://facebook.github.io/zstd/
https://www.infoq.com/presentations/parquet/

25/01/2026

DELTA ENCODING IN PARQUET
26

26

DELTA ENCODING IN PARQUET
27

17 x 8 = 136 bytes

8 + 8 + 1 + 2 + 8 + 1 + 3 =
31 bytes

27

DICTIONARY ENCODING
Concept

Replaces frequent, long values (e.g., strings) with smaller fixed-length integers

Uses a dictionary from the integers to the original values

Most widely used compression technique in DBMSs

Benefits
Reduces data size

Eliminates variable-length data

Does not require pre-sorting

Improves storage & access efficiency

28

City

New York

London

Paris

New York

Tokyo

London

Code Value

1 New York

2 London

3 Paris

4 Tokyo

City

1

2

3

1

4

2

Original Data Compressed Data

Dictionary

28

CONCLUSION

Important to choose the right storage model for the target workload
OLTP = Row store

OLAP = Column store

Modern column stores use the hybrid storage model and data compression
Some compressions can be directly operated on, e.g., RLE and dictionary encoding

Apache Parquet
Columnar storage format optimised for efficient data compression and

fast analytical queries on large datasets

29

29

