n ",

@\ THE UNIVERSITY
\#N/: of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #07/:
Storage Models & Compression

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

DATABASE WORKLOADS

On-Line Transactional Processing (OLTP)

Fast, simple operations that handle small amounts of data per transaction

On-Line Analytical Processing (OLAP)

Complex queries that read large amounts of data to compute aggregates

Hybrid Transactional and Analytical Processing (HTAP)
Combines OLTP and OLAP on the same database instance

Real-time analytics on live operational data w/o moving data between systems
(e.g., real-time fraud detection)

OLTP: ON-LINE TRANSACTIONAL PROCESSING

High volumes of real-time transactions SELECT P.*, R.*
. . FROM pages AS P
Simple queries that read/update a small INNER JOIN revision AS R
amount of data related to a single entity ON P.latest = R.revID

WHERE P.pagelID = 7

Focused on operational tasks

E.g., order processing, payments, inventory UPDATE useracct
SET lastLogin = NOW(),
Key features hostname = 7

WHERE userID = 7

Short queries

High concurrency INSERT INTO revisions
VALUES (?,7,7)

Balanced read-write operations

OLAP: ON-LINE ANALYTICAL PROCESSING

Designed for data analysis and reporting

Complex queries that read large portions of
the database spanning multiple entities

Get business insights from historical data
E.g., trend analysis, decision-making insights
OLAP runs on data collected from OLTP apps

Key features
Long-running queries over many tables
Read-heavy
Aggregated data

SELECT COUNT(U.lastLogin),
EXTRACT (MONTH FROM
U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE ‘%.gov’
GROUP BY EXTRACT(
MONTH FROM U.lastlLogin)

OBSERVATION

The relational model does not require the DMBS to store all
tuple attributes in a single page

This may not actually be the best layout for some workloads

The DBMS can store records in different ways that are better
for either OLTP or OLAP workloads

STORAGE MODELS

Storage model specifies how tuples are physically arranged on disk
and in memory

Can have different performance characteristics based on the target workload
(OLTP vs. OLAP)

Influences the design choices of the rest of the DBMS

Common models
Row Storage Model

Column Storage Model
Hybrid Storage Model (PAX)

Row STORAGE MODEL

Stores all attributes of a tuple (row) contiguously in memory and on disk

Ideal for OLTP workloads with frequent individual entity access and updates

Header userID userName userPass hostname lastLogin Record #1
Header userID userName userPass hostname lastLogin | Record #2

Header userID userName userPass hostname lastlLogin

Header userID userName userPass hostname lastlLogin

Row STORAGE MODEL

Stores all attributes of a tuple (row) contiguously in memory and on disk
Fixed-length and variable-length attributes stored contiguously in a single slotted page

Record ID = (page ID, slot ID) is how the DBMS uniquely identifies a physical tuple

Row-Store Disk Page

Header userID userName userPass hostname lastlLogin

Header userID userName userPass hostname lastlLogin

Header userID userName userPass hostname lastlLogin

Header userID userName userPass hostname lastlLogin

Row STORAGE MODEL

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

=

Index

¥

Row-Store Disk Page

Touches small amounts of data

Header
Header
Header

Header

userlID
userID
userID

userID

userName
userName
userName

userName

userPass
userPass
userPass

userPass

hostname
hostname
hostname

hostname

lastLogin

lastLogin

lastLogin

lastlLogin

Row STORAGE MODEL

SELECT COUNT(QU.lastlLogin},

FROM useracct AS U
WHERE [U. hostname |LIKE “%.gov’

GROUP BY EXTRACT(MONTH FROM|U.lastlLogin

EXTRACT(MONTH FROM JU.lastLogin} AS month

Row-Store Disk Page

Header @ userlD

Header @ userID
Header @ userID

Header @ userID

userName
userName
userName

userName

userPass
userPass
userPass

userPass

Useless Data

Scans entire relation
Most read data not needed

hostname
hostname
hostname

hostname

lastLogin
lastLogin
lastLogin

lastlLogin

10

11

Row STORAGE MODEL

Advantages
Fast access to all attributes of a single tuple. Fast inserts, updates, and deletes
Ideal for OLTP workloads involving individual tuple operations

Can use clustered indices in variant A for storing data covered later this week

Disadvantages
Reading entire rows for queries involving only a few attributes leads to unnecessary 1/0
Not good for reading large portions of the table and/or a subset of the attributes (OLAP)
Terrible memory locality in access patterns

Not ideal for compression because of multiple value domains within a single page

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Ideal for OLAP workloads where read-only queries perform large scans
over a subset of the table’s attributes

DMBS is responsible for combining/splitting a tuple’s attributes when
reading/writing

12

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk
Store attribute and metadata (e.g., nulls) in separate arrays of fixed-length values
Identify physical tuples using offsets into these arrays

Convert variable-length data into fixed-length values using dictionary compression

Header §userID}f userNamel userPass || hostname |} lastLogin
Header JuserID]} userNamel userPass || hostname |} lastLogin

Header JuserIDJf userNamel userPass || hostname |} lastLogin

Header §userID |l userNamell} userPass |} hostname J} lastLogin

COLUMNAR STORAGE MODEL

Store a single attribute for all tuples contiguously in memory and on disk

Column-Store Disk Page

Header hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

lastLogin

COLUMNAR STORAGE MODEL

SELECT COUNT(QU.lastlLogin},

EXTRACT (month FROMJU.lastLogin} AS month
FROM useracct AS U

WHERE LIKE ‘%.gov’
GROUP BY EXTRACT(month FROMJU.lastLogin

Column-Store Disk Page

Header hostname hostname

hostname hostname hostname

hostname hostname hostname

hostname hostname hostname

hostname
hostname
hostname

hostname

hostname
hostname
hostname

hostname

15

COLUMNAR STORAGE MODEL

Advantages

Reduces the amount of wasted 1/0 because the DBMS only
reads the data that it needs (free projection pushdown)

Faster query processing because of increased cache locality

Better data compression

Disadvantages

Slow for point queries, inserts, updates, and deletes
because of tuple splitting / stitching

17

HYBRID STORAGE MODEL (PAX)

OLAP queries rarely access a single column in isolation

During query execution, the DBMS must get other columns and reconstruct the original tuple

Ideally, we want columnar benefits (compression, efficient processing)
without losing the speed of accessing related data together

Partition Attributes Across (PAX) is a hybrid storage model that
vertically partitions attributes within a database page

Examples: Parquet, ORC, and Arrow

The goal is to combine the performance benefits of columnar storage with
the spatial locality advantages of row storage

18

HYBRID STORAGE MODEL

Horizontally partition data into row groups
Vertically partition row groups into column chunks

Global metadata directory contains
offsets to the file's row groups

This is stored in the footer if the file is

immutable (Parquet, Orc). Why?
PAX File

Each row group contains its own
metadata header about its contents

19

ColA ColB ColC

a0
al
a2

Row O
Row 1
Row 2

a3
ad
a5

Row 3
Row 4
Row 5

[r

Row Group O

Row group metadata

ColAchunk

Col B chunk CoI C chunk

7

RowGroup1

Row group metadata

ColAchunk

7

Col B chunk Col C chunk

File metadata

PARQUET FILE FORMAT

Data organisation

Row groups (default 128MB)

Column chunks

Pages (default TMB)
Metadata (min, max, count)
Rep/def levels (for nested data)
Encoded values

Footer
File, row group, and column metadata

(e.g., schema, count, row group offsets)

20

Parquet file

Row group O

Column A chunk

Column B chunk

Column X chunk

Column Z chunk

Row group N

Footer

Column X chunk

Page O

Page metadata

Repetition levels

Definition levels

Encoded values

Page 1

Page M

PARQUET FILE FORMAT

Columnar storage speeds up queries by reading only needed data

High compression reduces file size

Predicate pushdown speeds up queries by skipping irrelevant data based on statistics
Parallel processing: row groups enable distributed/parallel processing

Rich metadata: stores statistics, encoding info, schema (so parsing is fast)

Schema evolution: add/modify columns without rewriting the entire file

Widely used in big data platforms (Spark, Hive, Presto) and storage systems

21

COMPRESSION IN DBMS

Why compression?
Reduces storage and DRAM requirements
Improves system performance by increasing data per 1/0

Must be lossless > any lossy compression must be performed by application

Key trade-off

Speed vs. compression ratio - lower I/0 vs. higher CPU cost

Impact on query execution
Compressed pages reduce I/0 overheads
May increase CPU cost due to decompression
Sometimes queries can be run directly on compressed data

22

https://facebook.github.io/zstd/

NAIVE COMPRESSION

Uses general-purpose algorithms (e.g., zlib, Snappy, Zstd)

Compresses data block by block without understanding its meaning
Decompression required before reading or modification - limits efficiency
Limited scope: only considers data given as input, not high-level semantics

Lower compression ratio on heterogeneous data

23

COLUMNAR COMPRESSION

Run-length encoding
Supress duplicates, e.g., 2,2,2,3,4,4,4,4,4 = 2x3, 3x1, 4x5

Delta encoding
Encode differences, e.g., 2,3, 4,5 = 2, +1, +1, +1,
Pairs well with run-length encoding, e.g., 2, +1, +1, +1 = 2, +1x3

Bit packing
Use fewer bits for short integers
Pairs well with delta coding

Dictionary encoding
Replace frequent values with smaller fixed-length codes
Maintain a mapping from the codes to the original values

24

Good for mostly sorted
integers or categorical data

Good for mostly sorted
numeric data (floats)

Good for limited
precision data

Good for long,
frequent strings

DELTA ENCODING IN PARQUET

values: 100|101 {101 102|101 |101 |102 (101 | 99 (100|105 [107 | 114|116 | 119 120 | 121

reference block 1 block 2
‘101 |101 |102|101 101 |102‘101 | 99 \ ‘100|105 107|114|116\119 120 | 121 I
8 * 64bits values = 64 bytes deltas l 8 * 64bits values = 64 bytes

‘1‘0|1’-1 o|1|-1|-2| |1’5 2’7‘2|3 1 1|

Source: “Efficient Data Storage for Analytics with Apache Parquet 2.0”, Julian Le Dem

25

https://www.infoq.com/presentations/parquet/

DELTA ENCODING IN PARQUET

values: (100|101 {101 {102 101|101 |102 (101 | 99 (100|105 [107 | 114 | 116 | 119 120 | 121

reference block 1 block 2
‘101 ‘101 |102|101 101 |102|101 | 99 \ ‘100|105 107|114‘116 119|120 | 121 |
8 * 64bits values = 64 bytes deltas i 8 * 64bits values = 64 bytes
|1|0|1|-1o‘1‘-1|-2\ |1|5 2|7|231 1|
make deltas >0 .
min l . . min l
delta by subtracting min delta

26

DELTA ENCODING IN PARQUET

values: | 100 (101 (101 (102 [101 {101 |[102 | 101 | 99 [100 |105 (107 [114 [116 (119|120 | 121 17 X8 =136 bytes
reference block 1 block 2
101 {101 {102 (101 | 101 | 102 (101 | 99 |100|105|107|114 116|119|120 121 '
8 * 64bits values = 64 bytes deltas l 8 * 64bits values = 64 bytes
Iﬂl |1 0 1|4 |o|1|-1 e' |1|5 |2|7 2|3| 1 1'
make deltas > 0 .
min l . . min l
delta by subtracting min delta

2 | 3 2 3 1 2 3 1 0 1 0 4 1 6 1 2 0 0

maxbits = 2 maxbits = 3
111011 Jo1 [10] 11 [o1 [o0 000 | 100 [001 | 110 [001 [010 [000 | 000
reference bits l« packing bits l packing
2| 1110110110110100 | E ‘3|000100001110001010000000|
min s min o
delta 8 * 2 bits = 2 bytes delta 8 * 3 bits = 3 bytes

8+8+1+2+8+1+3=

result: [100| -2 |2|1110110110110100 | 1 |3 |000100001110001010000000
31 bytes

27

28

DICTIONARY ENCODING

Concept
Replaces frequent, long values (e.g., strings) with smaller fixed-length integers
Uses a dictionary from the integers to the original values

Most widely used compression technique in DBMSs

Benefits Original Data Compressed Data
Reduces data size
.. . New York 1 1 New York
Eliminates variable-length data p—— , R EE—
Does not require pre-sorting Paris :I|> 3 3 Paris
o New York 1 4 Tokyo
Improves storage & access efficiency .
okyo 4 L.
Dictionary
London 2

29

CONCLUSION

Important to choose the right storage model for the target workload
OLTP = Row store
OLAP = Column store

Modern column stores use the hybrid storage model and data compression

Some compressions can be directly operated on, e.g., RLE and dictionary encoding

Apache Parquet
Columnar storage format optimised for efficient data compression and

fast analytical queries on large datasets

	Slide 1
	Slide 2: Database Workloads
	Slide 3: OLTP: On-Line Transactional Processing
	Slide 4: OLAP: On-Line Analytical Processing
	Slide 5: Observation
	Slide 6: Storage Models
	Slide 7: Row Storage Model
	Slide 8: Row Storage Model
	Slide 9: Row Storage Model
	Slide 10: Row Storage Model
	Slide 11: Row Storage Model
	Slide 12: Columnar Storage Model
	Slide 13: Columnar Storage Model
	Slide 14: Columnar Storage Model
	Slide 15: Columnar Storage Model
	Slide 17: Columnar Storage Model
	Slide 18: Hybrid Storage Model (PAX)
	Slide 19: Hybrid Storage Model
	Slide 20: Parquet File Format
	Slide 21: Parquet File Format
	Slide 22: Compression in DBMS
	Slide 23: Naïve Compression
	Slide 24: Columnar Compression
	Slide 25: Delta Encoding in Parquet
	Slide 26: Delta Encoding in Parquet
	Slide 27: Delta Encoding in Parquet
	Slide 28: Dictionary Encoding
	Slide 29: Conclusion

