
25/01/2026

Advanced Database Systems
Spring 2026

Lecture #08:

File Organisations

R&G: Chapter 8

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

RECAP: F ILE ORGANISATIONS

Method of arranging a file of records on secondary storage

Heap Files
Store records in no particular order

Sorted Files
Store records in sorted order, based on search key fields

Index Files
Store records to enable fast lookup and modifications

Tree-based & hash-based indexes

2

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Cl ient

2

COMPARING F ILE ORGANISATIONS

What is the “best” file organisation?
Depends on access patterns...

What are common access patterns?

How to compare file organisations anyway?

Can we be quantitative about trade-offs?
If one is better … by how much?

3

3

GOALS

Big picture overheads for data access
We will (overly) simplify performance models to provide insight,
not to get perfect performance

Still, a bit of discipline:

Clearly identify assumptions up front

Then estimate cost in a principled way

Foundation for query optimization
Cannot choose the fastest scheme without an estimate of speed!

4

4

25/01/2026

COST MODEL FOR ANALYSIS

Simplistic, but effective I/O only cost model
P = Number of data pages in the file

R = Number of records per page

D = (Average) time to read or write disk page

Focus: Average case analysis for uniform random workloads

For now, we will ignore
Sequential vs random I/O

Prefetching pages

Any in-memory costs (CPU cost is “free”)

Good enough to show the overall trends

5

Page 1 Page 2 … Page P

Record R

Record 1

Record 2

…

5

RECORD OPERATIONS

Scan all records in given file

Search with equality test
On key attribute (e.g., studentID): assume exactly one match

On non-key attribute (e.g., age): may return multiple matches

Search with range selection

Single record insert and delete

For heap files, assume that insert always appends to end of file

For sorted files, assume that files are compacted after deletions

6

SELECT * FROM R

SELECT * FROM R WHERE C = 42

SELECT * FROM R WHERE A > 0 AND A < 100

6

HEAP F ILES
A heap file maintains a collection of records in no particular order

P: Number of data pages = 5

R: Number of records per page = 2

D: (Average) time to read/write disk page = 5 ms

7

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

For illustration, records are just integers

7

HEAP F ILE: SCAN ALL RECORDS

Read each page of the file, for each page scan over all records

Scanning all records touches P pages

Reading each page takes D time

Estimated cost: P · D

8

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

8

25/01/2026

HEAP F ILE: SEARCH ON KEY

Search on key attribute ⇒ at most one match

Our assumption: searched record exists in the file (i.e., exactly one match)

Pages touched on average?

Probability that key is on page i is 1/P

If key is on page i, need to read i pages

Expected number of touched pages:

 ∑!"#$ 𝑖 #$ =
#
$
$($&#)

(= $&#
(≈ $

(

Cost: P/2 · D

9

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

9

HEAP F ILE: SEARCH ON NON-KEY

Search on non-key attribute ⇒ possibly multiple matches
E.g.: Search for all records with value 8

Scan all pages in the file

Records are stored in no particular order,

thus we need to scan until the end of file

to return all matching records

Cost: P · D

10

2, 8 1, 6 8, 7 3, 10 8, 9

Heap File

10

HEAP F ILE: RANGE SEARCH

Range search

E.g.: Find records with values between 3 and 5

Always touch all pages

Same reasons as with searching

on non-key attributes

Cost: P · D

11

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

11

HEAP F ILE: INSERT & DELETE

Insert record

Read last page, append new record,
write page back to disk

Cost = 2D

Delete record

Average case to find the record: P/2 reads

Delete record from page,
write page back to disk

Cost = (P/2 + 1) · D

Note: Records from last page could be used to eliminate gaps caused by deletions (ignored here)

12

2, 5 1, 6 11, 7 3, 10 8, 9

After Inserting 0

0, _

2, 5 1, 6 11, 7 _, 10 8, 9

After Deleting 3

0, _

12

25/01/2026

HEAP F ILE ANALYSIS

P = Number of data pages

D = (Average) time to read or write disk page

13

scan iterate over all pages (linked or via directory) P · D

search
on key scan the file until found 0.5P · D

on non-key scan the file until end P · D

range query same as scan

delete search, delete from page, and write page 0.5P · D + D

insert “just stick it at the end” (read last page, add, write) 2D

13

SORTED F ILES

Store records sorted by lookup attributes, no gaps

Scanning all records
Records in sorted order (can be big plus)

Cost: P · D

Searching records

Use binary search when the search condition matches the sort order

Inserts & deletes are slow

Shift all subsequent records

14

1, 2 3, 5 6, 7 8, 9 10, 11

Sorted File

14

SORTED F ILE: SEARCH
Use binary search to locate matching record

E.g.: Find record with value 6

Pages touched in binary search:
Worst-case: log2P

Average-case: log2P

15

1, 2 3, 5 6, 7 8, 9 10, 11

Sorted File

12, 13 14, 15

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

15

SORTED F ILE: SEARCH
Binary search can be used only if the file is sorted on the search attribute

Search on key attribute
Cost: log2P · D

Search on non-key attribute & range search
Search for start of range

Scan on right

18

1, 2 3, 5 6, 7 8, 9 10, 11

Sorted File

12, 13 14, 15

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

18

25/01/2026

SORTED F ILE: INSERT & DELETE

Insert record
Find location for record: log2P · D

Insert and shift rest of file

On average shift P / 2 pages

Read & write each shifted page

Cost: 2 (P / 2) · D = P · D

Delete record

Find location for record: log2P · D

Delete and shift the rest by 1 record: P · D

19

1, 2 3, 4 5, 6 7, 8 9, 10

After Inserting 4 (from initial state)

11, _

Sorted File

1, 2 3, 5 6, 7 8, 9 10,11

After Deleting 9 (from initial state)

11, _1, 2 3, 5 6, 7 8, 10

19

SORTED F ILE ANALYSIS

P = Number of data pages

D = (Average) time to read or write disk page

20

scan iterate over all pages P · D

search

on key binary search log2P · D

on non-key binary search and search all matching records D · (log2P + # pgs
with match recs)

range query similar as search on non-key

delete search, delete, shift search + P · D

insert search, insert, shift search + P · D

20

HEAP F ILE VS. SORTED F ILE

P = Number of data pages

 D = (Average) time to read or write disk page

 Can we do better? Yes, indexes!

21

Heap File Sorted File

scan P · D P · D

search
on key 0.5P · D log2P · D

on non-key P · D (log2P + # pgs with match recs) · D

range query P · D (log2P + # pgs with match recs) · D

delete 0.5P · D + D (log2P + P) · D

insert 2D (log2P + P) · D

= slow

= very fast

= fast

21

INTRODUCTION TO INDEXES
Index = data structure that enables fast lookup by value

You may have seen in-memory data structures in Algorithms & DS course
Search trees (Binary, AVL, Red-Black, …)

Hash tables (Chained, Open Addressing, …)

Needed: persistent disk-based data structures
“Paginated”: made up of disk pages

Cost of access & maintenance measured in I/Os

Our focus: disk-based indexes
Tree-based & hash-based

22

22

25/01/2026

INDEX
Index = data structure that organizes data records to efficiently retrieve
all records matching a given search condition

Search key = attributes used to look up records in a relation
Can be any subset of the attributes of a relation. Do not need to be unique

Not the same as key = minimal set of attributes that uniquely identify a record

23

CREATE INDEX idx1 ON Student USING btree(sid)
CREATE INDEX idx2 ON Student USING hash(sid)
CREATE INDEX idx3 ON Student USING btree(age,name)

23

INDEX USAGE
24

IndexA = k

Search key

. . .

pointerk

Index Entry k*

A = k . . .

Data Record

An index contains a collection of index entries and supports efficient
retrieval of all index entries k* with a given key value k

24

INDEX ENTRIES
We can design the index entries (k*) in various ways

A: Record contents are stored in the index file

To avoid redundant storage of records at most one index on a table can use A

B and C use record IDs (rids) to point into the actual data file (heap file)

25

. . .kVariant A A = k . . .

rid

[rid1, rid2, …]

Variant B

Variant C

k

k

By Value

By Reference

By List of References

25

INDEX ENTRIES
Variant choice is orthogonal to the type of index (B+ trees, hash)

B and C have index entries typically much smaller than data records

C leads to fewer index entries if multiple records match a search key k,
but index entries are of variable length

26

. . .kVariant A A = k . . .

rid

[rid1, rid2, …]

Variant B

Variant C

k

k

By Value

By Reference

By List of References

26

25/01/2026

INDEXING BY REFERENCE

Both Variant B and Variant C index data by reference

By-reference is required to support multiple indexes per table

Otherwise we would be replicating entire tuples

Replicating data leads to complexity when doing updates,

so it’s something we want to avoid

27

27

INDEX CLASSIFICATION

Tree-based vs. Hash-based
Do not support same operations: range search only in tree indexes

Clustered vs. unclustered
Clustered = order of data records is same as, or ‘close to’, order of index entries

Primary vs. secondary
Primary index = search key contains primary key

Secondary index = search key may match multiple records

Unique index = search key contains a candidate key

29

29

B+ TREE INDEXES

Non-leaf pages only direct searches

Leaf pages are doubly linked

31

. . .

.

.

Non-leaf
pages

Leaf pages
(sorted by search key)

P0 PmKmP1K1 . . .

k < K1 K1 ≤ k < K2 Km ≤ k

31

EXAMPLE B+ TREE
32

2* 3*

27 305 13

8*5* 7* 14* 16* 22* 24* 27* 29* 38*33* 34* 39*

17

Root
Note how entries in
leaf level are sorted

Entries < 17 Entries ≥ 17

Find 29*? Find 28*? Find all entries > 15* and < 30*

Insert/delete: Find data entry in leaf, then change it

Need to adjust parent sometimes. Change sometimes bubbles up the tree

32

25/01/2026

HASH-BASED INDEX
Index is a collection of buckets

Bucket = primary page plus zero or more overflow pages

Buckets contain index entries

Hashing function h: h(r) = bucket in which record r belongs

33

Overflow pages

h(r)
record r

h looks at
the search fields of r

…

0

1

n-1

Bucket 0

Bucket N-1

Bucket 1

…

33

CLUSTERED VS. UNCLUSTERED INDEX
By-reference indexes (Variants B and C) can be clustered or unclustered

Really this is a property of the heap file associated with the index!

Clustered index
Heap file records are kept mostly ordered according to search key in index

Heap file order need not be perfect: this is just a performance hint

Cost of retrieving records can vary greatly based on whether index is clustered or not!

A heap file can be clustered on at most one search key

Variant A implies clustered index

36

36

CLUSTERED VS. UNCLUSTERED INDEX

To build a clustered index, first sort the heap file
Leave some free space on each page for future inserts

Index entries direct search for data entries

37

Clustered Unclustered

. .

.
. .
.

Data records Data records

Data file

Index file

37

CLUSTERED VS. UNCLUSTERED INDEX

Cost of retrieving records can vary greatly
Clustered: I/O cost = # pages in data file with matching records

Unclustered: I/O cost ≈ # of matching leaf index entries (i.e., matching records)

39

Clustered Unclustered

. .

.
. .
.

Data records Data records

Data file

Index file

39

25/01/2026

CLUSTERED VS. UNCLUSTERED INDEX
Clustered pros

Efficient for range searches

Potential locality benefits
Sequential disk access, prefetching, etc

Support certain types of compression
Sorted data → high likelihood of repetitive values or patterns that compression algos can exploit

Clustered cons
More expensive to maintain

Need to periodically update heap file order

Solution: on the fly or “lazily” via reorganisations

Heap file usually only packed to 2/3 to accommodate inserts
Overflow pages may be needed for inserts

40

40

SUMMARY

Heap Files: Suitable when typical access is a full scan of all records

Sorted Files: Best for retrieval in order or when a range of records is needed

Index Files: Fast lookup and efficient modifications
Tree-based vs. hash-based

Hash-based index only good for equality search

Tree index is always a good choice

Clustered vs. unclustered index

At most one clustered index per table

Multiple unclustered indexes are possible

49

49

