THE UNIVERSITY
of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #08:
File Organisations

R&G: Chapter 8

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

RECAP: FILE ORGANISATIONS

Method of arranging a file of records on secondary storage

Heap Files

SQL Client
g |
Store records in no particular order Query Planning
. Operator Execution
Sorted Files

Files & Index Management

Store records in sorted order, based on search key fields
Buffer Management

|ndex Fi|es Disk Space Management

Store records to enable fast lookup and modifications Database

Tree-based & hash-based indexes

COMPARING FILE ORGANISATIONS

What is the “best” file organisation?
Depends on access patterns...

What are common access patterns?
How to compare file organisations anyway?

Can we be quantitative about trade-offs?

If one is better ... by how much?

GOALS

Big picture overheads for data access

We will (overly) simplify performance models to provide insight,
not to get perfect performance

Still, a bit of discipline:
Clearly identify assumptions up front

Then estimate cost in a principled way

Foundation for query optimization

Cannot choose the fastest scheme without an estimate of speed!

COoST MODEL FOR ANALYSIS

Simplistic, but effective 1/0 only cost model

P = Number of data pages in the file
R = Number of records per page

D = (Average) time to read or write disk page ‘\ =

S
N
~.
\ ~.

\ NS

Focus: Average case analysis for uniform random workloads

For now, we will ignore

Sequential vs random I/0

Prefetching pages
Any in-memory costs (CPU cost is “free”)

Good enough to show the overall trends

RECORD OPERATIONS

Scan all records in given file | SELECT * FROM R

Search with equality test | SELECT * FROM R WHERE C = 42

On key attribute (e.g., studentID): assume exactly one match

On non-key attribute (e.g., age): may return multiple matches

Search with range selection | SELECT FROM R WHERE A > 0 AND A < 100

Single record insert and delete
For heap files, assume that insert always appends to end of file

For sorted files, assume that files are compacted after deletions

HEAP FILES

A heap file maintains a collection of records in no particular order

Heap File

mmmmm

For illustration, records are just integers

P: Number of data pages =5
R: Number of records per page = 2

D: (Average) time to read/write disk page =5 ms

HEAP FILE: SCAN ALL RECORDS

Read each page of the file, for each page scan over all records

Heap File

LTI

Scanning all records touches P pages

Reading each page takes D time

Estimated cost: P - D

HEAP FILE: SEARCH ON KEY

Search on key attribute = at most one match

Our assumption: searched record exists in the file (i.e., exactly one match)

Pages touched on average? Heap File

Probability that key is on page iis 1/P

If key is on page i, need to read i pages

Dmmmm

Expected number of touched pages:

P 1_1P(+D) _ Pt

=1"p~p 2 2

N]U

Cost: P/2-D

HEAP FILE: RANGE SEARCH

Range search

E.g.: Find records with values between 3 and 5

Always touch all pages Heap File

Same reasons as with searching
on non-key attributes

LT

Cost:P-D

E.g.: Search for all records with value 8

Scan all pages in the file

Records are stored in no particular order,
thus we need to scan until the end of file

to return all matching records

Cost:P-D

HEAP FILE: SEARCH ON NON-KEY

Search on non-key attribute = possibly multiple matches

Heap File

mmmmm

10

Insert record

Read last page, append new record,
write page back to disk

Cost =2D

Delete record

Average case to find the record: P/2 reads

Delete record from page,
write page back to disk

Cost=(P/2+1)-D

11

HEAP FILE: INSERT & DELETE

After Inserting 0

51 K3) 00 0

After Deleting 3

X1 K3 K 50 £

Note: Records from last page could be used to eliminate gaps caused by deletions (ignored here)

12

HEAP FILE ANALYSIS

SORTED FILES

Store records sorted by lookup attributes, no gaps

Sorted File

Scanning all records

Records in sorted order (can be big plus)

Cost:P-D

Searching records

Use binary search when the search condition matches the sort order

Inserts & deletes are slow

Shift all subsequent records

T T

scan iterate over all pages (linked or via directory) P-D
on key scan the file until found 0.5P D
search
on non-key scan the file until end P-D
range query same as scan
delete search, delete from page, and write page 0.5P-D+D
insert “just stick it at the end” (read last page, add, write) 2D
P = Number of data pages
D = (Average) time to read or write disk page
13
15
Use binary search to locate matching record
E.g.: Find record with value 6
Sorted File

Paie 1 Paie 2 Paie 3 Paie 4 Paie 5 Paie 6 Paie 7

NN /4

Pages touched in binary search:
Worst-case: log,P

Average-case: log,P

14

15

SORTED FILE: SEARCH

Binary search can be used only if the file is sorted on the search attribute

Search on key attribute

Cost: logzP - D

Sorted File

Search on non-key attribute & range search
Search for start of range
Scan on right

Paie 1 Paie 2 Paie 3 Paie 4 Paie 5 Paie 6 Paie 7
NN /. f\

18

SORTED FILE: INSERT & DELETE

Sorted File

I 1 (51 [

After Inserting 4 (from initial state)

After Deleting 9

Insert record

Find location for record: log,P - D

Insert and shift rest of file

On average shift P / 2 pages

Read & write each shifted page
Cost: 2(P/2)-D=P-D

Delete record
(from initial state)

1 £ £33 (X0

Find location for record: log,P - D

Delete and shift the rest by 1 record: P - D

19

HEAP FILE VS. SORTED FILE

Heap File Sorted File
scan P-D & P-D &
on key 05D B logaP - D ad

search o ;

on non-key P-D == (logP + # pgs with match recs) - D d}
range query P-D e, (logoP + # pgs with match recs) - D G}
delete 05P-D+D B, (logsP + P) - D s,
insert 2D & (logsP + P) - D S,

P = Number of data pages

é = very fast
@ = fast

Can we do better? Yes, indexes! &, -siow

D = (Average) time to read or write disk page

SORTED FILE ANALYSIS

scan iterate over all pages P-D

on key binary search logsP - D

search D - (logsP + # pgs

on non-ke binary search and search all matching records .
y y g with match recs)

range query similar as search on non-key

delete search, delete, shift search+P-D

insert search, insert, shift search+P-D

P = Number of data pages

D = (Average) time to read or write disk page

20

20

INTRODUCTION TO INDEXES

Index = data structure that enables fast lookup by value

You may have seen in-memory data structures in Algorithms & DS course
Search trees (Binary, AVL, Red-Black, ...)
Hash tables (Chained, Open Addressing, ...)

Needed: persistent disk-based data structures
“Paginated”: made up of disk pages

Cost of access & maintenance measured in 1/0s

Our focus: disk-based indexes
Tree-based & hash-based

21

22

22

23

INDEX

Index = data structure that organizes data records to efficiently retrieve
all records matching a given search condition

Search key = attributes used to look up records in a relation
Can be any subset of the attributes of a relation. Do not need to be unique

Not the same as key = minimal set of attributes that uniquely identify a record

CREATE INDEX idx1 ON Student USING btree(sid)
CREATE INDEX idx2 ON Student USING hash(sid)
CREATE INDEX idx3 ON Student USING btree(age,name)

INDEX USAGE

An index contains a collection of index entries and supports efficient
retrieval of all index entries k* with a given key value k

Search key Index Entry k*

] » [o

A=k

Data Record

23

25

INDEX ENTRIES

We can design the index entries (k*) in various ways

Variant A A=k
Variant B rid

Variant C | k |

By Value

By Reference

[rid1, rid2, ...] | By List of References

A: Record contents are stored in the index file
To avoid redundant storage of records at most one index on a table can use A

B and C use record IDs (rids) to point into the actual data file (heap file)

24

INDEX ENTRIES

Variant choice is orthogonal to the type of index (B+ trees, hash)

Variant A A=k By Value
Variant B rid By Reference
Variant C | k | [rid1, rid2, ...] | By List of References

B and C have index entries typically much smaller than data records

C leads to fewer index entries if multiple records match a search key k,
but index entries are of variable length

25

26

27

INDEXING BY REFERENCE

Both Variant B and Variant C index data by reference

By-reference is required to support multiple indexes per table
Otherwise we would be replicating entire tuples

Replicating data leads to complexity when doing updates,
so it's something we want to avoid

27

31

B+ TREE INDEXES

Non-leaf
pages

(sorted by search key)
Non-leaf pages only direct searches | Po | Ki | P | |Km | Pm|
Leaf pages are doubly linked K<Ki Ki<k<Ko Ko< k

29

INDEX CLASSIFICATION

Tree-based vs. Hash-based

Do not support same operations: range search only in tree indexes
Clustered vs. unclustered
Clustered = order of data records is same as, or ‘close to’, order of index entries

Primary vs. secondary

Primary index = search key contains primary key
Secondary index = search key may match multiple records

Unique index = search key contains a candidate key

29

32

EXAMPLE B+ TREE

R
oot

Note how entries in
leaf level are sorted

Find 29*? Find 28*? Find all entries > 15* and < 30*
Insert/delete: Find data entry in leaf, then change it

Need to adjust parent sometimes. Change sometimes bubbles up the tree

31

32

33

HASH-BASED INDEX

Index is a collection of buckets

Bucket = primary page plus zero or more overflow pages

Buckets contain index entries

Hashing function h: h(r) = bucket in which record r belongs

Bucket 0
Bucket 1
h looks at =
the search fields of r Overflow pages Bucket N-1

36

CLUSTERED VS. UNCLUSTERED INDEX

By-reference indexes (Variants B and C) can be clustered or unclustered

Really this is a property of the heap file associated with the index!

Clustered index

Heap file records are kept mostly ordered according to search key in index
Heap file order need not be perfect: this is just a performance hint

Cost of retrieving records can vary greatly based on whether index is clustered or not!
A heap file can be clustered on at most one search key

Variant A implies clustered index

33

37

CLUSTERED VS. UNCLUSTERED INDEX

~ ~

Clustered Unclustered

el Jo . <[] Index file

/ -
N Data file

Data records

P N .
T T 1L
Data records

To build a clustered index, first sort the heap file

Leave some free space on each page for future inserts

Index entries direct search for data entries

36

39

CLUSTERED VS. UNCLUSTERED INDEX

Clustered Unclustered

C el Jo .. <[] Index file

/ -
6 o o M Datafile

Data records

s =]
—
T YT 1L L
[B .
Data records
Cost of retrieving records can vary greatly

Clustered: 1/0 cost = # pages in data file with matching records

Unclustered: I/0 cost = # of matching leaf index entries (i.e., matching records)

37

39

40

CLUSTERED VS. UNCLUSTERED INDEX

Clustered pros
Efficient for range searches
Potential locality benefits
Sequential disk access, prefetching, etc
Support certain types of compression

Sorted data — high likelihood of repetitive values or patterns that compression algos can exploit

Clustered cons
More expensive to maintain
Need to periodically update heap file order
Solution: on the fly or “lazily” via reorganisations
Heap file usually only packed to 2/3 to accommodate inserts

Overflow pages may be needed for inserts

40

49

SUMMARY

Heap Files: Suitable when typical access is a full scan of all records
Sorted Files: Best for retrieval in order or when a range of records is needed

Index Files: Fast lookup and efficient modifications
Tree-based vs. hash-based
Hash-based index only good for equality search
Tree index is always a good choice
Clustered vs. unclustered index
At most one clustered index per table

Multiple unclustered indexes are possible

49

