
Advanced Database Systems
Spring 2026

Lecture #08:

File Organisations

R&G: Chapter 8

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

RECAP: FILE ORGANISATIONS

Method of arranging a file of records on secondary storage

Heap Files

Store records in no particular order

Sorted Files

Store records in sorted order, based on search key fields

Index Files

Store records to enable fast lookup and modifications

Tree-based & hash-based indexes

2

Disk Space Management

Buffer Management

Fi les & Index Management

Operator Execution

Query Planning

Database

SQL Client

COMPARING FILE ORGANISATIONS

What is the “best” file organisation?

Depends on access patterns...

What are common access patterns?

How to compare file organisations anyway?

Can we be quantitative about trade-offs?

If one is better … by how much?

3

GOALS

Big picture overheads for data access

We will (overly) simplify performance models to provide insight,

not to get perfect performance

Still, a bit of discipline:

Clearly identify assumptions up front

Then estimate cost in a principled way

Foundation for query optimization

Cannot choose the fastest scheme without an estimate of speed!

4

COST MODEL FOR ANALYSIS

Simplistic, but effective I/O only cost model

P = Number of data pages in the file

R = Number of records per page

D = (Average) time to read or write disk page

Focus: Average case analysis for uniform random workloads

For now, we will ignore

Sequential vs random I/O

Prefetching pages

Any in-memory costs (CPU cost is “free”)

Good enough to show the overall trends

5

Page 1 Page 2 … Page P

Record R

Record 1

Record 2

…

RECORD OPERATIONS

Scan all records in given file

Search with equality test

On key attribute (e.g., studentID): assume exactly one match

On non-key attribute (e.g., age): may return multiple matches

Search with range selection

Single record insert and delete

For heap files, assume that insert always appends to end of file

For sorted files, assume that files are compacted after deletions

6

SELECT * FROM R

SELECT * FROM R WHERE C = 42

SELECT * FROM R WHERE A > 0 AND A < 100

HEAP FILES

A heap file maintains a collection of records in no particular order

P: Number of data pages = 5

R: Number of records per page = 2

D: (Average) time to read/write disk page = 5 ms

7

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

For illustration, records are just integers

HEAP FILE: SCAN ALL RECORDS

Read each page of the file, for each page scan over all records

Scanning all records touches P pages

Reading each page takes D time

Estimated cost: P · D

8

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

HEAP FILE: SEARCH ON KEY

Search on key attribute ⇒ at most one match

Our assumption: searched record exists in the file (i.e., exactly one match)

Pages touched on average?

Probability that key is on page i is 1/P

If key is on page i, need to read i pages

Expected number of touched pages:

σ𝑖=1
𝑃 𝑖

1

𝑃
=

1

𝑃

𝑃(𝑃+1)

2
=

𝑃+1

2
≈

𝑃

2

Cost: P/2 · D

9

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

HEAP FILE: SEARCH ON NON-KEY

Search on non-key attribute ⇒ possibly multiple matches

E.g.: Search for all records with value 8

Scan all pages in the file

Records are stored in no particular order,

thus we need to scan until the end of file

to return all matching records

Cost: P · D

10

2, 8 1, 6 8, 7 3, 10 8, 9

Heap File

HEAP FILE: RANGE SEARCH

Range search

E.g.: Find records with values between 3 and 5

Always touch all pages

Same reasons as with searching

on non-key attributes

Cost: P · D

11

2, 5 1, 6 11, 7 3, 10 8, 9

Heap File

HEAP FILE: INSERT & DELETE

Insert record

Read last page, append new record,

write page back to disk

Cost = 2D

Delete record

Average case to find the record: P/2 reads

Delete record from page,

write page back to disk

Cost = (P/2 + 1) · D

Note: Records from last page could be used to eliminate gaps caused by deletions (ignored here)

12

2, 5 1, 6 11, 7 3, 10 8, 9

After Inserting 0

0, _

2, 5 1, 6 11, 7 _, 10 8, 9

After Deleting 3

0, _

HEAP FILE ANALYSIS

P = Number of data pages

D = (Average) time to read or write disk page

13

scan iterate over all pages (linked or via directory) P · D

search
on key scan the file until found 0.5P · D

on non-key scan the file until end P · D

range query same as scan

delete search, delete from page, and write page 0.5P · D + D

insert “just stick it at the end” (read last page, add, write) 2D

SORTED FILES

Store records sorted by lookup attributes, no gaps

Scanning all records

Records in sorted order (can be big plus)

Cost: P · D

Searching records

Use binary search when the search condition matches the sort order

Inserts & deletes are slow

Shift all subsequent records

14

1, 2 3, 5 6, 7 8, 9 10,11

Sorted File

SORTED FILE: SEARCH

Use binary search to locate matching record

E.g.: Find record with value 6

Pages touched in binary search:

Worst-case: log2P

Average-case: log2P

15

1, 2 3, 5 6, 7 8, 9 10, 11

Sorted File

12, 13 14, 15

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

SORTED FILE: SEARCH

Binary search can be used only if the file is sorted on the search attribute

Search on key attribute

Cost: log2P · D

Search on non-key attribute & range search

Search for start of range

Scan on right

18

1, 2 3, 5 6, 7 8, 9 10, 11

Sorted File

12, 13 14, 15

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

SORTED FILE: INSERT & DELETE

Insert record

Find location for record: log2P · D

Insert and shift rest of file

On average shift P / 2 pages

Read & write each shifted page

Cost: 2 (P / 2) · D = P · D

Delete record

Find location for record: log2P · D

Delete and shift the rest by 1 record: P · D

19

1, 2 3, 4 5, 6 7, 8 9, 10

After Inserting 4 (from initial state)

11, _

Sorted File

1, 2 3, 5 6, 7 8, 9 10,11

After Deleting 9 (from initial state)

11, _1, 2 3, 5 6, 7 8, 10

SORTED FILE ANALYSIS

P = Number of data pages

D = (Average) time to read or write disk page

20

scan iterate over all pages P · D

search

on key binary search log2P · D

on non-key binary search and search all matching records
D · (log2P + # pgs
with match recs)

range query similar as search on non-key

delete search, delete, shift search + P · D

insert search, insert, shift search + P · D

HEAP FILE VS. SORTED FILE

P = Number of data pages

D = (Average) time to read or write disk page

Can we do better? Yes, indexes!

21

Heap File Sorted File

scan P · D P · D

search
on key 0.5P · D log2P · D

on non-key P · D (log2P + # pgs with match recs) · D

range query P · D (log2P + # pgs with match recs) · D

delete 0.5P · D + D (log2P + P) · D

insert 2D (log2P + P) · D

= slow

= very fast

= fast

INTRODUCTION TO INDEXES

Index = data structure that enables fast lookup by value

You may have seen in-memory data structures in Algorithms & DS course

Search trees (Binary, AVL, Red-Black, …)

Hash tables (Chained, Open Addressing, …)

Needed: persistent disk-based data structures

“Paginated”: made up of disk pages

Cost of access & maintenance measured in I/Os

Our focus: disk-based indexes

Tree-based & hash-based

22

INDEX

Index = data structure that organizes data records to efficiently retrieve

all records matching a given search condition

Search key = attributes used to look up records in a relation

Can be any subset of the attributes of a relation. Do not need to be unique

Not the same as key = minimal set of attributes that uniquely identify a record

23

CREATE INDEX idx1 ON Student USING btree(sid)

CREATE INDEX idx2 ON Student USING hash(sid)

CREATE INDEX idx3 ON Student USING btree(age,name)

INDEX USAGE

24

IndexA = k

Search key

. . .

pointerk

Index Entry k*

A = k . . .

Data Record

An index contains a collection of index entries and supports efficient

retrieval of all index entries k* with a given key value k

INDEX ENTRIES

We can design the index entries (k*) in various ways

A: Record contents are stored in the index file

To avoid redundant storage of records at most one index on a table can use A

B and C use record IDs (rids) to point into the actual data file (heap file)

25

. . .kVariant A A = k . . .

rid

[rid1, rid2, …]

Variant B

Variant C

k

k

By Value

By Reference

By List of References

INDEX ENTRIES

Variant choice is orthogonal to the type of index (B+ trees, hash)

B and C have index entries typically much smaller than data records

C leads to fewer index entries if multiple records match a search key k,

but index entries are of variable length

26

. . .kVariant A A = k . . .

rid

[rid1, rid2, …]

Variant B

Variant C

k

k

By Value

By Reference

By List of References

INDEXING BY REFERENCE

Both Variant B and Variant C index data by reference

By-reference is required to support multiple indexes per table

Otherwise we would be replicating entire tuples

Replicating data leads to complexity when doing updates,

so it’s something we want to avoid

27

INDEX CLASSIFICATION

Tree-based vs. Hash-based

Do not support same operations: range search only in tree indexes

Clustered vs. unclustered

Clustered = order of data records is same as, or ‘close to’, order of index entries

Primary vs. secondary

Primary index = search key contains primary key

Secondary index = search key may match multiple records

Unique index = search key contains a candidate key

29

B+ TREE INDEXES

Non-leaf pages only direct searches

Leaf pages are doubly linked

31

. . .

.

.

Non-leaf
pages

Leaf pages
(sorted by search key)

P0 PmKmP1K1 . . .

k < K1 K1 ≤ k < K2 Km ≤ k

EXAMPLE B+ TREE

32

2* 3*

27 305 13

8*5* 7* 14* 16* 22* 24* 27* 29* 38*33* 34* 39*

17

Root
Note how entries in

leaf level are sorted

Entries < 17 Entries ≥ 17

Find 29*? Find 28*? Find all entries > 15* and < 30*

Insert/delete: Find data entry in leaf, then change it

Need to adjust parent sometimes. Change sometimes bubbles up the tree

HASH-BASED INDEX

Index is a collection of buckets

Bucket = primary page plus zero or more overflow pages

Buckets contain index entries

Hashing function h: h(r) = bucket in which record r belongs

33

Overflow pages

h(r)
record r

h looks at
the search fields of r

…

0

1

n-1

Bucket 0

Bucket N-1

Bucket 1

…

CLUSTERED VS. UNCLUSTERED INDEX

By-reference indexes (Variants B and C) can be clustered or unclustered

Really this is a property of the heap file associated with the index!

Clustered index

Heap file records are kept mostly ordered according to search key in index

Heap file order need not be perfect: this is just a performance hint

Cost of retrieving records can vary greatly based on whether index is clustered or not!

A heap file can be clustered on at most one search key

Variant A implies clustered index

36

CLUSTERED VS. UNCLUSTERED INDEX

To build a clustered index, first sort the heap file

Leave some free space on each page for future inserts

Index entries direct search for data entries

37

Clustered Unclustered

. .

.
. .
.

Data records Data records

Data file

Index file

CLUSTERED VS. UNCLUSTERED INDEX

Cost of retrieving records can vary greatly

Clustered: I/O cost = # pages in data file with matching records

Unclustered: I/O cost ≈ # of matching leaf index entries (i.e., matching records)

39

Clustered Unclustered

. .

.
. .
.

Data records Data records

Data file

Index file

CLUSTERED VS. UNCLUSTERED INDEX

Clustered pros

Efficient for range searches

Potential locality benefits

Sequential disk access, prefetching, etc

Support certain types of compression

Sorted data → high likelihood of repetitive values or patterns that compression algos can exploit

Clustered cons

More expensive to maintain

Need to periodically update heap file order

Solution: on the fly or “lazily” via reorganisations

Heap file usually only packed to 2/3 to accommodate inserts

Overflow pages may be needed for inserts

40

SUMMARY

Heap Files: Suitable when typical access is a full scan of all records

Sorted Files: Best for retrieval in order or when a range of records is needed

Index Files: Fast lookup and efficient modifications

Tree-based vs. hash-based

Hash-based index only good for equality search

Tree index is always a good choice

Clustered vs. unclustered index

At most one clustered index per table

Multiple unclustered indexes are possible

49

	Slide 1
	Slide 2: Recap: File Organisations
	Slide 3: Comparing File Organisations
	Slide 4: Goals
	Slide 5: Cost Model for Analysis
	Slide 6: Record Operations
	Slide 7: Heap Files
	Slide 8: Heap File: Scan All Records
	Slide 9: Heap File: Search on Key
	Slide 10: Heap File: Search on Non-Key
	Slide 11: Heap File: Range Search
	Slide 12: Heap File: Insert & Delete
	Slide 13: Heap File Analysis
	Slide 14: Sorted Files
	Slide 15: Sorted File: Search
	Slide 18: Sorted File: Search
	Slide 19: Sorted File: Insert & Delete
	Slide 20: Sorted File Analysis
	Slide 21: Heap File vs. Sorted File
	Slide 22: Introduction to Indexes
	Slide 23: Index
	Slide 24: Index Usage
	Slide 25: Index Entries
	Slide 26: Index Entries
	Slide 27: Indexing by Reference
	Slide 29: Index Classification
	Slide 31: B+ Tree Indexes
	Slide 32: Example B+ Tree
	Slide 33: Hash-Based Index
	Slide 36: Clustered vs. Unclustered Index
	Slide 37: Clustered vs. Unclustered Index
	Slide 39: Clustered vs. Unclustered Index
	Slide 40: Clustered vs. Unclustered Index
	Slide 49: Summary

