THE UNIVERSITY
of EDINBURGH SORTED FILES AND BINARY SEARCH

Efficient evaluation of range queries

Advanced Database Systems

. SELECT * FROM Customer
Spring 2026 ,
WHERE zipcode BETWEEN 8800 AND 8999

Sort table on disk by zipcode
Lecture #09:

Use binary search to find the first qualifying record

Tree-StrUCtUFEd IndeXIng Scan as long as zipcode < 8999
R&G: Chapter 10 m
MmN O®NOMOIWOoOWO®OVWO O FO 0N O MO O N
SEH8EE R3S RIRILIIEBBIE SR
9 F DO O D00 OO WOODO 0D 0O
scan
If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk
1 2
3
SORTED FILES AND BINARY SEARCH TREE-STRUCTURED INDEXING

Two index structures particularly shine with range selections
ISAM: Static structure

4104%
4222%
4528%
6330%

page0 pagel page2 page3 paged4 page5 page6 page/ page8 page9 page10 page 1l page 12

scan Simple idea: Create an ‘index’ file

9016%
9200%*
Iiiiiiil

B+ Tree: Dynamic structure, adjust gracefully under inserts and deletes

Sequential access during the scan phase

[Kike ks | | |- k]| Index file

Need to read log,(#records) records during the search phase

Need to read about as many pages ® ; / X < \ :
PageZ cee Page M\l : Sorted data file

Fan-out of 2 &> deep tree - lots of I/0s

Make far, unpredictable jumps = bad for page prefetching Can do binary search on (smaller) index file!

TREE-STRUCTURED INDEXING

Size of index is likely much smaller than size of data

Searching the index file is far more efficient than searching the data file

Index file may still be quite large = apply the idea repeatedly!
Treat the topmost index level as data file

Add an index level on top of that

Repeat until the topmost index level fits on one page

The topmost level is called the root page

ISAM: INDEXED SEQUENTIAL ACCESS METHOD

Index entry: <search key value, page ID>
I—%
[Pofki]Pi] ... Jkm|Pw]
i i I
k<Ki Kisk<Kz Km <k
Non-leaf
pages

Leaf pages [jiﬁg‘ii] [jf}f'ti:%) [fi f'ti] [ji i E;]

/
/

S
~. e \

Overflow page§ Primary pages

Non-leaf pages only direct searches

Leaf pages contain sorted index data entries k* (e.g., <k, rid>)

ISAM: INDEXED SEQUENTIAL ACCESS METHOD

Leaf (data) pages allocated sequentially, sorted by search key

No need to link leaf pages together
Search: Start at root, use key comparisons to go to leaf

Insert: Find the leaf where record belongs to
Insert record there if enough space

Otherwise, create an overflow page hanging off the primary leaf page

Delete: Find and remove record from its leaf

If an overflow page becomes empty, deallocate it

Static tree structure: inserts/deletes affect only leaf pages

7

EXAMPLE ISAM TREE

Non-leaf
pages

Primary /

|10* 15%

20*|27* 33%|37*% 40* |46% 51*|55% 63%|97*

leaf pages

Each node can hold two index entries plus one page pointer (the left-most one)

AFTER INSERTING 23%*, 48%*, 41%, 42%...

Non-leaf
pages
Primary
10% [15% 20% | 27* 33%|37*% 40* | 46* 51%|55% 63*% | 97*%
leaf pages N

/

Overflow)

pages
pages may not be ordered

The records on the overflow

... THEN DELETING 42%*, 97*, 51*

Non-leaf

pages

imary o). B O B

Ieaf pages 10* | 15% 20% | 27* \ 33% |37% 40* | 46* 55% 63*%
Sg B

Overflow

pages

Note that 51 appears in index levels, but not in leaf!

10

COMMENTS ON ISAM

Non-leaf levels are not affected by inserts/deletes

Need not be locked during concurrent index accesses

Locking can be a bottleneck in dynamic tree indexes (particularly near the root)

ISAM may lose balance after heavy updating
Creating long chains of (unsorted) overflow pages
Search performance can degrade over time

Leaving free space (~20%) during index creation partially reduces this problem

ISAM may be the index of choice for relatively static data

11

ISAM vS. BINARY SEARCH

N = number of pages in the data file (search space)

Fanout F = max #children / index node
F =3 in the previous example; F = 1000 typically

From the root page we are guided into an index subtree of size N/F
After s steps down the tree, the search space is reduced to N-(1/F)*

Assume we reach a leaf node after s steps

N-(1/F)s=1 hence s = logg(N)

F 3 2, hence loge(N) <« loga(N) ISAM is much more efficient

than binary search!

12

B+ TREE: MOST WIDELY USED INDEX

B+ tree is like ISAM but

Has no overflow chains, it remains always balanced
l.e., every leaf is at same depth

Search performance only dependent on the height

Because of high fanout F, the height rarely exceeds 3

Offers efficient insert/delete procedures

The data file can grow/shrink dynamically, non-leaf nodes are modified

Each node (except the root) has a minimum occupancy of 50%

Each non-root node contains d £ m < 2d entries, d is called the order of the tree

Original publication: R. Bayer and E.M. McCreight. Organisation and Maintenance of Large Ordered Indices. Acta Informatica, 1:3, 1972

13

EXAMPLE B+ TREE

B+ tree of order d =2 Note that leaf pages

are doubly linked

Occupancy Invariant:

Each non-root node is at least partially full: d < #entries < 2d
Max fan-out =2d + 1

Data pages at bottom need not be stored in sequential order
Leaf pages allocated dynamically, linked via next and prev pointers

EXAMPLE B+ TREE

B+ tree of orderd =2 Note that leaf pages

are doubly linked

Search begins at root, and key comparisons direct it to a leaf (as in ISAM)
Search for 5%, 15%, all data entries > 24*...

Based on the search for 15*, we know it is not in the tree!

14

15

B+ TREES IN PRACTICE

Typical order: 100. Typical fill-factor: 67%
Average fanout F = 2¥100%0.67 = 133

Typical capacities
Height 4: 1334 =312,900,721 records
Height3: 1333= 2,352,637 records

Can often hold top levels in buffer pools
Level 1= 1 page = 8KB
Level 2= 133 pages = 1MB

Level 3=17,689 pages = 138MB

16

INSERTING A DATA ENTRY

Find correct leaf L
Put data entry into L in sorted order
If L has enough space, done!

Else, must split Linto L and a new node L2
Redistribute entries evenly, copy up middle key

Insert index entry pointing to L2 into parent of L

To split inner node, redistribute entries evenly, but push up middle key

17

INSERTING 8* INTO EXAMPLE B+ TREE

Root N

To be inserted in parent
node (5 is copied up)

To be inserted in parent node
(17 is pushed up)

Split leaf page

Split non-leaf page

Observe how minimum occupancy is guaranteed in both leaf and non-leaf page splits

Note difference between copy-up and push-up; be sure you understand the reasons for this

EXAMPLE B+ TREE AFTER INSERTING 8%

Notice that root was split, leading to increase in height

In this example, we can avoid split by re-distributing entries

18

19

20

REDISTRIBUTION: INSERTING 6%*

Move keys to under-filled sibling pages and adjust separator

&2 || 14% | 16%

| SR

Adds additional I/0, but more efficient space use

P
&2 || &= 7* [14*|16*

In practice, redistribution is done only at leaf level (pointers provide direct access to siblings!)

20

21

DELETING A DATA ENTRY FROM A B+ TREE

Start at root, find leaf L where entry belongs
Remove the entry

If L is at least half-full, done!

If L has only d-1 entries,
Try to redistribute, borrowing from sibling (adjacent node with same parent as L)

If redistribution fails, merge L and sibling
If merge occurred, must delete entry (pointing to L or sibling) from parent of L

Merge could propagate to root, decreasing height

21

DELETING 19*% AND 20%*...

Deleting 19% is easy

no underflow since p remains
with d = 2 entries

Deleting 20*

p underflow and p”has > d entries
= (leaf node) redistribution

Notice how middle key is copied up

pagep page p’

22

23

... AND THEN DELETING 24%*

not sibling of page p page p’
page p!

p underflow and p’has d = 2 entries
= (leaf node) merge

Delete separator between p and p’(27) recursively

22

23

... STILL DELETING 24* (MERGE)

22*% | 27% | 29* 33%|34% 38*|39‘|

Delete 27 separator

p underflow and p”has d = 2 entries 17
= (non-leaf node) merge /[
IBIE)

Merge p and p’ by “pulling down” the separator

Since root is empty, delete it

24

24

25

... STILL DELETING 24* (REDISTRIBUTION)

Assume a different left subtree

p underflow and p”has > d = 2 entries
= (non-leaf node) redistribution

Redistribute entries by ‘pushing through’
the splitting entry in the parent

B+ TREE: DELETIONS

In practice, occupancy invariant often not enforced
Just delete leaf entries and leave space

If new inserts come, great

This is common

If page becomes completely empty, can delete

Parent may become underflow
That's OK too

Guarantees still attractive: loge(max size of tree)

25

26

27

VARIABLE LENGTH KEYS & RECORDS

So far we have been using integer keys

BB

What would happen to our occupancy invariant with variable length keys?

H robbed ” robbing || robot ”

What about data in leaf pages stored using Variant C?

l robbed: {3, 14, 30, 50, 75, 90} | robbing: {1} |robot: {12, 13}]

26

REDEFINE OCCUPANCY INVARIANT

Order (d) makes little sense with variable-length entries
Different nodes have different numbers of entries
Non-leaf index pages often hold many more entries than leaf pages

Even with fixed length fields, Variant C gives variable length data entries

Use a physical criterion in practice: at-least half-full

Measured in bytes

Many real systems are even sloppier than this
Only reclaim space when a page is completely empty

Basically the deletion policy we described above...

27

28

28

OPTIMIZATIONS

Prefix compression

Sorted keys in the same leaf node are likely to
have the same prefix

Instead of storing entire keys, extract common
prefix and store only unique suffix for each key

Suffix truncation

The keys in the inner nodes are only used to
“direct traffic". We do not need the entire key

Store a minimum prefix needed to correctly
route probes into the index

29

|| robbed ” robbing || robot ||

¥

Prefix: rob

|l abcdefghijk "Imnopqrstu I |
v v

A
oo][T

SUMMARY

ISAM and B+ tree support both range searches and equality searches
ISAM suitable for mostly static data
B+ tree is always a good choice

Great B+ tree visualisation:

: fea edu/- isualization/BPIusT

30

29

30

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

