
Advanced Database Systems
Spring 2026

Lecture #09:

Tree-Structured Indexing

R&G: Chapter 10

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

SORTED FILES AND BINARY SEARCH

Efficient evaluation of range queries

Sort table on disk by zipcode

Use binary search to find the first qualifying record

Scan as long as zipcode ≤ 8999

2

SELECT * FROM Customer
WHERE zipcode BETWEEN 8800 AND 8999

SORTED FILES AND BINARY SEARCH

Sequential access during the scan phase

Need to read log2(#records) records during the search phase

Need to read about as many pages 

Fan-out of 2 → deep tree → lots of I/Os

Make far, unpredictable jumps ⇒ bad for page prefetching

3

Two index structures particularly shine with range selections

ISAM: Static structure

B+ Tree: Dynamic structure, adjust gracefully under inserts and deletes

Simple idea: Create an ‘index’ file

Can do binary search on (smaller) index file!

k1 k2 k3

TREE-STRUCTURED INDEXING

4

Page 0 Page 1 Page NPage 2

kN

Sorted data file

Index file. . .

. . .

TREE-STRUCTURED INDEXING

Size of index is likely much smaller than size of data

Searching the index file is far more efficient than searching the data file

Index file may still be quite large ⇒ apply the idea repeatedly!

Treat the topmost index level as data file

Add an index level on top of that

Repeat until the topmost index level fits on one page

The topmost level is called the root page

5

ISAM: INDEXED SEQUENTIAL ACCESS METHOD

6

. . .

.

.

Non-leaf
pages

Leaf pages

P0 PmKmP1K1 . . .

Non-leaf pages only direct searches

Leaf pages contain sorted index data entries k* (e.g., <k, rid>)

Overflow pages Primary pages

Index entry: <search key value, page ID>

k < K1 K1 ≤ k < K2 Km ≤ k

ISAM: INDEXED SEQUENTIAL ACCESS METHOD

Leaf (data) pages allocated sequentially, sorted by search key

No need to link leaf pages together

Search: Start at root, use key comparisons to go to leaf

Insert: Find the leaf where record belongs to

Insert record there if enough space

Otherwise, create an overflow page hanging off the primary leaf page

Delete: Find and remove record from its leaf

If an overflow page becomes empty, deallocate it

Static tree structure: inserts/deletes affect only leaf pages

7

EXAMPLE ISAM TREE

8

10* 15*

51 6320 33

20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

40

Root

Non-leaf
pages

Primary

leaf pages

Each node can hold two index entries plus one page pointer (the left-most one)

AFTER INSERTING 23*, 48*, 41*, 42*…
9

10* 15*

51 6320 33

20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

40

Root

23* 48* 41*

42*

Non-leaf
pages

Primary

leaf pages

Overflow

pages The records on the overflow

pages may not be ordered

… THEN DELETING 42*, 97*, 51*

Note that 51 appears in index levels, but not in leaf!

10

10* 15*

51 6320 33

20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

40

Root

23* 48* 41*

42*

Non-leaf
pages

Primary

leaf pages

Overflow

pages

55*

COMMENTS ON ISAM

Non-leaf levels are not affected by inserts/deletes

Need not be locked during concurrent index accesses

Locking can be a bottleneck in dynamic tree indexes (particularly near the root)

ISAM may lose balance after heavy updating

Creating long chains of (unsorted) overflow pages

Search performance can degrade over time

Leaving free space (~20%) during index creation partially reduces this problem

ISAM may be the index of choice for relatively static data

11

ISAM VS. BINARY SEARCH

N = number of pages in the data file (search space)

Fanout F = max #children / index node

F = 3 in the previous example; F = 1000 typically

From the root page we are guided into an index subtree of size N / F

After s steps down the tree, the search space is reduced to N·(1/ F)s

Assume we reach a leaf node after s steps

N·(1/ F)s = 1 hence s = logF(N)

F≫ 2, hence logF(N) ≪ log2(N)

12

ISAM is much more efficient

than binary search!

B+ TREE: MOST WIDELY USED INDEX

B+ tree is like ISAM but

Has no overflow chains, it remains always balanced

I.e., every leaf is at same depth

Search performance only dependent on the height

Because of high fanout F, the height rarely exceeds 3

Offers efficient insert/delete procedures

The data file can grow/shrink dynamically, non-leaf nodes are modified

Each node (except the root) has a minimum occupancy of 50%

Each non-root node contains d ≤ m ≤ 2d entries, d is called the order of the tree

13

Original publication: R. Bayer and E.M. McCreight. Organisation and Maintenance of Large Ordered Indices. Acta Informatica, 1:3, 1972

EXAMPLE B+ TREE

B+ tree of order d = 2

Occupancy Invariant:

Each non-root node is at least partially full: d ≤ #entries ≤ 2d

Max fan-out = 2d + 1

Data pages at bottom need not be stored in sequential order

Leaf pages allocated dynamically, linked via next and prev pointers

14

13 17 24 30

5*2* 3* 7* 14* 16* 22*19* 20* 29*24* 27* 38*33* 34* 39*

Root

Note that leaf pages

are doubly linked

EXAMPLE B+ TREE

B+ tree of order d = 2

Search begins at root, and key comparisons direct it to a leaf (as in ISAM)

Search for 5*, 15*, all data entries ≥ 24*…

Based on the search for 15*, we know it is not in the tree!

15

13 17 24 30

5*2* 3* 7* 14* 16* 22*19* 20* 29*24* 27* 38*33* 34* 39*

Root

Note that leaf pages

are doubly linked

B+ TREES IN PRACTICE

Typical order: 100. Typical fill-factor: 67%

Average fanout F = 2*100*0.67 = 133

Typical capacities

Height 4: 1334 = 312,900,721 records

Height 3: 1333 = 2,352,637 records

Can often hold top levels in buffer pools

Level 1 = 1 page = 8KB

Level 2 = 133 pages = 1MB

Level 3 = 17,689 pages = 138MB

16

INSERTING A DATA ENTRY

Find correct leaf L

Put data entry into L in sorted order

If L has enough space, done!

Else, must split L into L and a new node L2

Redistribute entries evenly, copy up middle key

Insert index entry pointing to L2 into parent of L

To split inner node, redistribute entries evenly, but push up middle key

17

INSERTING 8* INTO EXAMPLE B+ TREE

Observe how minimum occupancy is guaranteed in both leaf and non-leaf page splits

Note difference between copy-up and push-up; be sure you understand the reasons for this

18

13 17 24 30

5*2* 3* 7* 14* 16* 22*19* 20* 29*24* 27* 38*33* 34* 39*

Root

2* 3* 8*5* 7*

5
To be inserted in parent node

(5 is copied up)

5 13 24 30

17
To be inserted in parent node

(17 is pushed up)

Split leaf page Split non-leaf page

EXAMPLE B+ TREE AFTER INSERTING 8*

Notice that root was split, leading to increase in height

In this example, we can avoid split by re-distributing entries

19

17

2* 3* 8*5* 7* 22*19* 20* 29*24* 27* 38*33* 34* 39*

Root

24 305 13

14* 16*

REDISTRIBUTION: INSERTING 6*

Adds additional I/O, but more efficient space use

In practice, redistribution is done only at leaf level (pointers provide direct access to siblings!)

20

13 17 24 30

5*2* 3* 7* 14* 16* 22*19* 20* 29*24* 27* 38*33* 34* 39*

7 17 24 30

5*2* 3* 6* 16*7* 14* 22*19* 20* 29*24* 27* 38*33* 34* 39*

Move keys to under-filled sibling pages and adjust separator

DELETING A DATA ENTRY FROM A B+ TREE

Start at root, find leaf L where entry belongs

Remove the entry

If L is at least half-full, done!

If L has only d-1 entries,

Try to redistribute, borrowing from sibling (adjacent node with same parent as L)

If redistribution fails, merge L and sibling

If merge occurred, must delete entry (pointing to L or sibling) from parent of L

Merge could propagate to root, decreasing height

21

DELETING 19* AND 20*…

Deleting 19* is easy

no underflow since p remains

with d = 2 entries

Deleting 20*

p underflow and p’ has > d entries

⇒ (leaf node) redistribution

Notice how middle key is copied up

22

22*19* 20* 29*24* 27* 38*33* 34* 39*

24 30

22* 24* 27* 29* 38*33* 34* 39*

27 30

page p

page p page p’

… AND THEN DELETING 24*

p underflow and p’ has d = 2 entries

⇒ (leaf node) merge

Delete separator between p and p’ (27) recursively

23

17

2* 3* 8*5* 7* 22* 24* 27* 29* 38*33* 34* 39*

27 305 13

16*14* 15*

page p page p’

29*22* 27* 38*33* 34* 39*

30

not sibling of

page p!

… STILL DELETING 24* (MERGE)

Delete 27 separator

p underflow and p’ has d = 2 entries

⇒ (non-leaf node) merge

Merge p and p’ by “pulling down” the separator

Since root is empty, delete it

24

17

2* 3* 8*5* 7* 29*22* 27* 38*33* 34* 39*

305 13

14* 16*

page ppage p’

17

5 13 3017

… STILL DELETING 24* (REDISTRIBUTION)

Assume a different left subtree

p underflow and p’ has > d = 2 entries

⇒ (non-leaf node) redistribution

Redistribute entries by ’pushing through’

the splitting entry in the parent

25

22

30
5 13 17 20 page ppage p’

38*33* 34* 39*29*22* 27*20* 21*17* 18*14* 16*8*5* 7*2* 3*

20

22 305 13 17

B+ TREE: DELETIONS

In practice, occupancy invariant often not enforced

Just delete leaf entries and leave space

If new inserts come, great

This is common

If page becomes completely empty, can delete

Parent may become underflow

That’s OK too

Guarantees still attractive: logF(max size of tree)

26

VARIABLE LENGTH KEYS & RECORDS

So far we have been using integer keys

What would happen to our occupancy invariant with variable length keys?

What about data in leaf pages stored using Variant C?

27

5 13 17 20

robbed robbing robot

robbed: {3, 14, 30, 50, 75, 90} robbing: {1} robot: {12, 13}

REDEFINE OCCUPANCY INVARIANT

Order (d) makes little sense with variable-length entries

Different nodes have different numbers of entries

Non-leaf index pages often hold many more entries than leaf pages

Even with fixed length fields, Variant C gives variable length data entries

Use a physical criterion in practice: at-least half-full

Measured in bytes

Many real systems are even sloppier than this

Only reclaim space when a page is completely empty

Basically the deletion policy we described above…

28

OPTIMIZATIONS

Prefix compression

Sorted keys in the same leaf node are likely to

have the same prefix

Instead of storing entire keys, extract common

prefix and store only unique suffix for each key

Suffix truncation

The keys in the inner nodes are only used to

“direct traffic”. We do not need the entire key

Store a minimum prefix needed to correctly

route probes into the index

29

robbed robbing robot

bed bing ot

Prefix: rob

abc lmn

abcdefghijk lmnopqrstu

SUMMARY

ISAM and B+ tree support both range searches and equality searches

ISAM suitable for mostly static data

B+ tree is always a good choice

Great B+ tree visualisation:

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

30

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

	Slide 1
	Slide 2: Sorted Files and Binary Search
	Slide 3: Sorted Files and Binary Search
	Slide 4: Tree-Structured Indexing
	Slide 5: Tree-Structured Indexing
	Slide 6: ISAM: Indexed Sequential Access Method
	Slide 7: ISAM: Indexed Sequential Access Method
	Slide 8: Example ISAM Tree
	Slide 9: After Inserting 23*, 48*, 41*, 42*…
	Slide 10: … Then Deleting 42*, 97*, 51*
	Slide 11: Comments on ISAM
	Slide 12: ISAM vs. Binary Search
	Slide 13: B+ Tree: Most Widely Used Index
	Slide 14: Example B+ Tree
	Slide 15: Example B+ Tree
	Slide 16: B+ Trees in Practice
	Slide 17: Inserting a Data Entry
	Slide 18: Inserting 8* into Example B+ Tree
	Slide 19: Example B+ Tree After Inserting 8*
	Slide 20: Redistribution: Inserting 6*
	Slide 21: Deleting a Data Entry from a B+ Tree
	Slide 22: Deleting 19* and 20*…
	Slide 23: … And Then Deleting 24*
	Slide 24: … Still Deleting 24* (Merge)
	Slide 25: … Still Deleting 24* (Redistribution)
	Slide 26: B+ Tree: Deletions
	Slide 27: Variable Length Keys & Records
	Slide 28: Redefine Occupancy Invariant
	Slide 29: Optimizations
	Slide 30: Summary

