THE UNIVERSITY
of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #10:

Hash-Based Indexing

R&G: Chapter 11

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1

RECAP: IN-MEMORY HASH TABLE

(FRoOM ALGORITHMS & DATA STRUCTURES COURSE)

A hash table implements an associative array (dictionary)

Data is stored as a collection of key-value pairs

It uses a hash function to compute an offset into an array of buckets (slots)

From which the desired value can be found
T

0

h(ky)
h(ky)

collision

h(ky) = h(ks)

hiky)

m-1

Source: Introduction to Algorithms, 3rd edition

COLLISION RESOLUTION

By chaining Open Addressing

Link together entries hashed to the same value Single giant table of slots
Long chains can degrade search performance Hash to slot, then probe until a free slot is found

Variants: Linear Probing, Cuckoo, Robin Hood, ...

keys buckets
001 | Usa smith | 521-8976
Jon s o[[]
Lisa Smith 151 |
53| Jjohn smith | 521-1234

Sam Doe [153]

Sandra Dee | 521-9655

154 | Ted Baker | 418-4165
Sandra Dee 155 |
Ted Baker 253

255

I
I R

ce: Introduction to Algorithms, 3rd editio Source

HASHING IN DATABASES

We want to be able to group together tuples with the same key value

Partition the data with hash function(s) applied on the key

All tuples with a certain key will be in the same partition

Useful for:
Removing duplicates (all duplicates will be grouped together)
Grouping data (for GROUP BY)

Looking up data using hash indexes

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

HASH-BASED INDEXING

Suitable for equality-based predicates

SELECT * FROM Customer WHERE A = constant

Cannot support range queries

Other query operations internally generate a flood of equality tests

E.g.: nested loop join, where hash index can make a real difference

Support in commercial DBMSs
Tree-structured indexes preferred since they cover the more general range predicates

But hash-based indexes are used for (index) nested loop joins

OVERVIEW

Static and dynamic hashing techniques exist

Trade-offs similar to ISAM vs. B+ trees

Static hashing schemes
Chained hashing

Dynamic hashing schemes

Extendible hashing

Linear hashing (not covered)

STATIC CHAINED HASHING

Hash index is a collection of buckets

Build static hash index on column A
Allocate a fixed area of N (successive) pages, the so-called primary buckets
In each bucket, install a pointer to a chain of overflow pages (initially set to null)
Define a hash function h with range [0, ..., N-1]

The domain of h is the type of A
e.g., h:INTEGER — [0, ..., N-1], if Ais of type INTEGER

The hash function determines the bucket where the desired value can be found

STATIC CHAINED HASH TABLE

Bucket = primary page plus zero or more overflow pages

Buckets contain index entries k* implemented using any of the variants A, B, or C

Bucket 0
record r S
,,,,, hi)- Bucket 1
hlooks at the search (—] Overflow pages Bucket N-1
key field k of record r

Primary
bucket pages

10

STATIC CHAINED HASH TABLE MANAGEMENT

Operations: search, insert, delete
Compute h(k) on the search key field k of record r

Access the primary bucket page with number h(k)

Search for/insert/delete record on this page or, if needed, access the overflow pages

If overflow chain access is avoidable
search requires a single 1/0 operation

insert and delete require two I/0 operations

HASH COLLISIONS AND OVERFLOW CHAINS

Hash collisions are unavoidable
For search keys k and k', can happen h(k) = h(k’)
Search keys may not be unique (e.g., student age)
Even if unique, the search key space is much larger than # of buckets

Having as many primary bucket pages as different search keys in database = waste of space

Long overflow chains can degrade performance
Operation costs become non-uniform and unpredictable for a query optimiser
To reduce this problem, h needs to scatter search keys evenly across [0, ..., N-1]

Large # of entries can still cause long chains (dynamic hashing to fix this)

10

HASH FUNCTIONS

How to map a large key space into a smaller domain
Real distributions of search key values are often non-uniform (skewed)

Trade-off between being fast vs. collision rate
We want a lightweight (non-cryptographic) hash function with a low collision rate

Simple hash function: h(k) = k mod N
Guarantees the range of h(k) to be [0,N-1]
Choosing N = 24 for some d effectively considers the least d bits of k only
Prime numbers work best for N

Better hash functions used in practice

xxHash (+ benchmark), MurmurHash, Google CityHash, Google FarmHash, CLHash

12

11

STATIC HASHING AND DYNAMIC FILES

If the data file grows,

the development of overflow chains spoils the index I/0 behaviour (1-2 1/0 operations)

If the data file shrinks,

a significant fraction of primary buckets may be (almost) empty - a waste of space

We may periodically rehash the data file to restore the ideal situation
(20% free space, no overflow chains)

Expensive - the index not usable while rehashing is in progress

As for ISAM, static hashing has advantages with concurrent access

Only need to lock one bucket page to store a new entry or extend the overflow chain

13

https://cyan4973.github.io/xxHash/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
https://github.com/google/farmhash
https://github.com/lemire/clhash

EXTENDIBLE HASHING

Situation: Bucket (primary page) is full and we want to insert. Why not
reorganize the index by doubling # of buckets?

Reading and writing all pages is expensive!

Idea: Use directory of pointers to buckets, double # of buckets by
doubling the directory, splitting just the bucket that overflowed
Directory much smaller than file, so doubling it is much cheaper

Only one page of data entries is split

No overflow pages!

EXTENDIBLE HASHING

J

8 (01000)
14(01110)
00

o1

10 25 (11001)
11

11(01011)

HH!J HII!J

Note: we depict as index entries h(k) instead of k*

14

15

GLOBAL AND LOCAL DEPTH

Global depth (n at directory) global 8 (01000) local
14 (01110)
Use the least n bits of h(k) to find a 00
bucket pointer in the directory 01
21(10101) local
The directory size is 27 10 25 (11001)
11 || —
Local depth (d at individual buckets) 1101011) local
The hash values h(k) of all entries in

this bucket agree on their least d bits

EXTENDIBLE HASHING

11(01011) local

lobal | n local .
g - Find A
00] hash(A) = 14 = 01110,
o oo JBY local
10
11 [|

To find a bucket for A, take the least 2 bits of hash(A)

16

17

EXTENDIBLE HASHING

global

00
01

B0

11

8 (01000)

14 (01110)

21(10101)
25(11001)

11(01011)

HH!J H

local

local

local

Find A
hash(A) = 14 = 01 1@2

Check if the bucket contains key A. Need to compare keys due to collisions!

18

EXTENDIBLE HASHING

8 (01000)

J

local

EXTENDIBLE HASHING

global

00
» o
10
11

8 (01000)
14(01110)

21(10101)
25(11001)
29 (11101)

i HI!J

11(01011)

local

local

local

20

Find A
hash(A)=14=01110,

Insert B
hash(B) = 29 = 11101,

If the bucket still has capacity, store the index entry in it

global o Find A
00 hash(A)=14=01110;
01 local Insert B
10 hash(B) = 29 = 11101
» — ’
n local
[
[|
19
21
EXTENDIBLE HASHING
global oo [l local g
14 (01110
. — hash(A) = 14 = 01110,
01 local Insert B
10 hash(B) =29 = 11101,
.
11(01011) n local Insert C
hash(C)=5=00101

20

21

EXTENDIBLE HASHING

global

00
» 01
10
11

8 (01000)

14 (01110)

21(10101)
25(11001)
29(11101)

11(01011)

J

II: \III!J

local

local

local

Find A
hash(A)=14=01110;

Insert B
hash(B)=29= 11101,

Insert C
hash(C) = 5 = 00101,

Split bucket if full (allocate new bucket, increase local, redistribute)

22

22

EXTENDIBLE HASHING

23

EXTENDIBLE HASHING

gal
o
o
L

000
001
010
011
100

A\ 4

8 (01000)
14(01110)

25 (11001

21(10101)

29 (11101)

101
110
11

N

FIRRRNARNN| -

11(01011)

JHH!] Ii

2

local

local

local

local

Find A
hash(A)=14=01110,

Insert B
hash(B)=29=11101,

Insert C
hash(C)=5=00101-

24

| w local .
gObal 14 (01110) Find A
00 hash(A) = 14 = 01110,
» o local Insert B
10 | hash(B) = 29 = 11101
1 1 ‘
B local Insert C
hash(C) =5 =00101,
3 bits now needed to :|
discriminate between —
these two buckets = local
double directory %
23
25
EXTENDIBLE HASHING
global = o)) focal Find A
000 [&] hash(A) =14 =01110,
001 | & local Insert B
010) &7 | hash(B) =29 = 11101
011 | o= [|
100 | &= 21(10101) local Insert C
» 101 | @ > [29 (11101) hash(C)=5=02
110 _.__/ 5 (00101)
111 | e 1101011 | 28 local

24

25

26

DIRECTORY DOUBLING

Double directory by copying its original pointers and "fixing” pointer
to split bucket

Use of least significant bits enables efficient doubling via copying!

Splitting a bucket does not always require doubling the directory
Buckets with local depth < global depth have multiple pointers to them
Splitting such buckets does not require doubling

Modifying one or more bucket pointers in directory is sufficient

Directory can also shrink when buckets become empty

26

SUMMARY

Hash-based indexes

Best for equality searches, cannot support range searches

Static hashing

Can lead to long overflow chains

Extendible hashing

Avoids overflow chains by splitting a full bucket when a new entry is to be added to it

27

27

