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RECAP: IN-MEMORY HASH TABLE
( F R O M A L G O R I T H M S &  D ATA S T R U C T U R E S C O U R S E )

A hash table implements an associative array (dictionary) 

Data is stored as a collection of key-value pairs

It uses a hash function to compute an offset into an array of buckets (slots)

From which the desired value can be found
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collision

Source: Introduction to Algorithms, 3rd edition



COLLISION RESOLUTION

By chaining

Link together entries hashed to the same value

Long chains can degrade search performance
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Source: Introduction to Algorithms, 3rd edition

Open Addressing

Single giant table of slots

Hash to slot, then probe until a free slot is found

Variants: Linear Probing, Cuckoo, Robin Hood, …

Source: https://en.wikipedia.org/wiki/Hash_table

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table


HASHING IN DATABASES

We want to be able to group together tuples with the same key value

Partition the data with hash function(s) applied on the key

All tuples with a certain key will be in the same partition

Useful for:

Removing duplicates (all duplicates will be grouped together)

Grouping data (for GROUP BY)

Looking up data using hash indexes
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HASH-BASED INDEXING

Suitable for equality-based predicates

Cannot support range queries 

Other query operations internally generate a flood of equality tests

E.g.: nested loop join, where hash index can make a real difference

Support in commercial DBMSs

Tree-structured indexes preferred since they cover the more general range predicates

But hash-based indexes are used for (index) nested loop joins
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SELECT * FROM Customer WHERE A = constant



OVERVIEW

Static and dynamic hashing techniques exist

Trade-offs similar to ISAM vs. B+ trees

Static hashing schemes

Chained hashing

Dynamic hashing schemes

Extendible hashing

Linear hashing (not covered)
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STATIC CHAINED HASHING

Hash index is a collection of buckets

Build static hash index on column A

Allocate a fixed area of N (successive) pages, the so-called primary buckets

In each bucket, install a pointer to a chain of overflow pages (initially set to null)

Define a hash function h with range [0, …, N-1]

The domain of h is the type of A

e.g., h : INTEGER ⟶ [0, …, N-1], if A is of type INTEGER

The hash function determines the bucket where the desired value can be found
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STATIC CHAINED HASH TABLE

Bucket = primary page plus zero or more overflow pages

Buckets contain index entries k* implemented using any of the variants A, B, or C
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STATIC CHAINED HASH TABLE MANAGEMENT

Operations: search, insert, delete

Compute h(k) on the search key field k of record r

Access the primary bucket page with number h(k)

Search for/insert/delete record on this page or, if needed, access the overflow pages

If overflow chain access is avoidable

search requires a single I/O operation

insert and delete require two I/O operations
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HASH COLLISIONS AND OVERFLOW CHAINS

Hash collisions are unavoidable

For search keys k and k’, can happen h(k) = h(k’)

Search keys may not be unique (e.g., student age)

Even if unique, the search key space is much larger than # of buckets

Having as many primary bucket pages as different search keys in database ⇒ waste of space

Long overflow chains can degrade performance 

Operation costs become non-uniform and unpredictable for a query optimiser

To reduce this problem, h needs to scatter search keys evenly across [0, …, N-1]

Large # of entries can still cause long chains (dynamic hashing to fix this)
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HASH FUNCTIONS

How to map a large key space into a smaller domain

Real distributions of search key values are often non-uniform (skewed)

Trade-off between being fast vs. collision rate

We want a lightweight (non-cryptographic) hash function with a low collision rate

Simple hash function:    h(k) = k mod N

Guarantees the range of h(k) to be [0,N-1]

Choosing N = 2d for some d effectively considers the least d bits of k only

Prime numbers work best for N

Better hash functions used in practice

xxHash (+ benchmark), MurmurHash, Google CityHash, Google FarmHash, CLHash
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https://cyan4973.github.io/xxHash/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
https://github.com/google/farmhash
https://github.com/lemire/clhash


STATIC HASHING AND DYNAMIC FILES

If the data file grows, 

the development of overflow chains spoils the index I/O behaviour (1–2 I/O operations)

If the data file shrinks, 

a significant fraction of primary buckets may be (almost) empty – a waste of space

We may periodically rehash the data file to restore the ideal situation 

(20% free space, no overflow chains)

Expensive – the index not usable while rehashing is in progress

As for ISAM, static hashing has advantages with concurrent access

Only need to lock one bucket page to store a new entry or extend the overflow chain
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EXTENDIBLE HASHING

Situation: Bucket (primary page) is full and we want to insert. Why not 

reorganize the index by doubling # of buckets?

Reading and writing all pages is expensive!

Idea: Use directory of pointers to buckets, double # of buckets by 

doubling the directory, splitting just the bucket that overflowed

Directory much smaller than file, so doubling it is much cheaper

Only one page of data entries is split

No overflow pages!

14



EXTENDIBLE HASHING
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Note: we depict as index entries h(k) instead of k*



GLOBAL AND LOCAL DEPTH

Global depth (n at directory)

Use the least n bits of h(k) to find a 

bucket pointer in the directory 

The directory size is 2n

Local depth (d at individual buckets)

The hash values h(k) of all entries in 

this bucket agree on their least d bits
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EXTENDIBLE HASHING
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To find a bucket for A, take the least 2 bits of hash(A)



EXTENDIBLE HASHING
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Check if the bucket contains key A. Need to compare keys due to collisions! 



EXTENDIBLE HASHING
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EXTENDIBLE HASHING
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If the bucket still has capacity, store the index entry in it



EXTENDIBLE HASHING
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EXTENDIBLE HASHING
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Insert C
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Split bucket if full (allocate new bucket, increase local, redistribute)
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EXTENDIBLE HASHING

2global

00

01

10

11

3 bits now needed to 

discriminate between 

these two buckets ⇒

double directory
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EXTENDIBLE HASHING
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EXTENDIBLE HASHING



DIRECTORY DOUBLING

Double directory by copying its original pointers and ”fixing” pointer 

to split bucket

Use of least significant bits enables efficient doubling via copying!

Splitting a bucket does not always require doubling the directory

Buckets with local depth < global depth have multiple pointers to them

Splitting such buckets does not require doubling

Modifying one or more bucket pointers in directory is sufficient

Directory can also shrink when buckets become empty
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SUMMARY

Hash-based indexes

Best for equality searches, cannot support range searches

Static hashing 

Can lead to long overflow chains

Extendible hashing 

Avoids overflow chains by splitting a full bucket when a new entry is to be added to it 
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