@\ THE UNIVERSITY
\#N/: of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #10:
Hash-Based Indexing

R&G: Chapter 11

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

RECAP: IN-MEMORY HASH TABLE

(FROM ALGORITHMS & DATA STRUCTURES COURSE)

A hash table implements an associative array (dictionary)

Data is stored as a collection of key-value pairs

It uses a hash function to compute an offset into an array of buckets (slots)

From which the desired value can be found

0

h(k,)
h(k,)

collision

h(k,) = h(ks)

h(ks)

m—1

T
-
-

Source: Introduction to Algorithms, 3rd edition

COLLISION RESOLUTION

By chaining Open Addressing
Link together entries hashed to the same value Single giant table of slots
Long chains can degrade search performance Hash to slot, then probe until a free slot is found

Variants: Linear Probing, Cuckoo, Robin Hood, ...

k| 2L k)] keys buckets
000
001 | Lisa Smith | 521-8976
002

/6| 1L k] 121 [k]/]

1/ k] T [ke| /]

John Smith 521-1234
Sandra Dee | 521-9655
Ted Baker 418-4165

155

253
254 | SamDoe | 521-5030
255

=
(%)}
=

Source: Introduction to Algorithms, 3rd edition Source:

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hash_table

HASHING IN DATABASES

We want to be able to group together tuples with the same key value

Partition the data with hash function(s) applied on the key

All tuples with a certain key will be in the same partition

Useful for:

Removing duplicates (all duplicates will be grouped together)
Grouping data (for GROUP BY)

Looking up data using hash indexes

HASH-BASED INDEXING

Suitable for equality-based predicates

SELECT * FROM Customer WHERE A = constant

Cannot support range queries

Other query operations internally generate a flood of equality tests

E.g.: nested loop join, where hash index can make a real difference

Support in commercial DBMSs

Tree-structured indexes preferred since they cover the more general range predicates

But hash-based indexes are used for (index) nested loop joins

OVERVIEW

Static and dynamic hashing techniques exist

Trade-offs similar to ISAM vs. B+ trees

Static hashing schemes
Chained hashing

Dynamic hashing schemes
Extendible hashing

Linear hashing (not covered)

STATIC CHAINED HASHING

Hash index is a collection of buckets

Build static hash index on column A

Allocate a fixed area of N (successive) pages, the so-called primary buckets

In each bucket, install a pointer to a chain of overflow pages (initially set to null)

Define a hash function h with range [0, ..., N-1]
The domain of h is the type of A

e.g., h: INTEGER — [0, ..., N-1], if A is of type INTEGER

The hash function determines the bucket where the desired value can be found

STATIC CHAINED HASH TABLE

Bucket = primary page plus zero or more overflow pages

Buckets contain index entries k* implemented using any of the variants A, B, or C

0 4 I J— =18 Bucket O
,,,,,,, —— ——
recordr /N 1 % ——
et A— > . Bucket 1
\\\\\\\\ —
\\\\\\\\\\ : ‘ |
N-1 ™ 1 !
h looks at the search — Overflow pages Bucket N-1
key field k of record r
Primary

bucket pages

10

STATIC CHAINED HASH TABLE MANAGEMENT

Operations: search, insert, delete
Compute h(k) on the search key field k of record r
Access the primary bucket page with number h(k)

Search for/insert/delete record on this page or, if needed, access the overflow pages

If overflow chain access is avoidable
search requires a single 1/0 operation

insert and delete require two I/0 operations

11

HASH COLLISIONS AND OVERFLOW CHAINS

Hash collisions are unavoidable
For search keys k and k', can happen h(k) = h(k’)
Search keys may not be unique (e.g., student age)

Even if unique, the search key space is much larger than # of buckets

Having as many primary bucket pages as different search keys in database = waste of space

Long overflow chains can degrade performance
Operation costs become non-uniform and unpredictable for a query optimiser
To reduce this problem, h needs to scatter search keys evenly across [0, ..., N-1]

Large # of entries can still cause long chains (dynamic hashing to fix this)

HASH FUNCTIONS

How to map a large key space into a smaller domain

Real distributions of search key values are often non-uniform (skewed)

Trade-off between being fast vs. collision rate

We want a lightweight (non-cryptographic) hash function with a low collision rate

Simple hash function: h(k) =k mod N
Guarantees the range of h(k) to be [0,N-1]
Choosing N = 29 for some d effectively considers the least d bits of k only

Prime numbers work best for N

Better hash functions used in practice
xxHash (+ benchmark), MurmurHash, Google CityHash, Google FarmHash, CLHash

12

https://cyan4973.github.io/xxHash/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
https://github.com/google/farmhash
https://github.com/lemire/clhash

13

STATIC HASHING AND DYNAMIC FILES

If the data file grows,
the development of overflow chains spoils the index I/O behaviour (1-2 1/0 operations)

If the data file shrinks,

a significant fraction of primary buckets may be (almost) empty - a waste of space

We may periodically rehash the data file to restore the ideal situation
(20% free space, no overflow chains)

Expensive - the index not usable while rehashing is in progress

As for ISAM, static hashing has advantages with concurrent access

Only need to lock one bucket page to store a new entry or extend the overflow chain

EXTENDIBLE HASHING

Situation: Bucket (primary page) is full and we want to insert. Why not
reorganize the index by doubling # of buckets?

Reading and writing all pages is expensive!

ldea: Use directory of pointers to buckets, double # of buckets by
doubling the directory, splitting just the bucket that overflowed

Directory much smaller than file, so doubling it is much cheaper
Only one page of data entries is split

No overflow pages!

14

EXTENDIBLE HASHING

8 (01000) 1
14 (01110)

21 (10101)

25 (11001)

Note: we depict as index entries h(k) instead of k*

15

GLOBAL AND LocAL DEPTH

Global depth (n at directory) global []
Use the Iefa\st n .bits of I?(k) to find a 00 =
bucket pointer in the directory 01 | o=
The directory size is 27 10 | &=

Local depth (d at individual buckets)

The hash values h(k) of all entries in
this bucket agree on their least d bits

8 (01000) - local

14 (01110)

21(10101) - local

25(11001)

11(01011) - local

16

EXTENDIBLE HASHING

8 (M local

(01000

14 (01110

)

; Find A

- hash(A) =14 =01110,
01 local
10
» -
11(01011) local

To find a bucket for A, take the least 2 bits of hash(A)

EXTENDIBLE HASHING

8 (01000
14 (01110

) B local

)

local
]
11 () local

Find A
hash(A)=14 =011

10,

Check if the bucket contains key A. Need to compare keys due to collisions!

18

EXTENDIBLE HASHING

8 (01000) | B |ocal
14 (01110)

Find A
hash(A) =14 =01110,

21(10101) local Insert B
25 (11001) hash(B) =29=11101 5

local

EXTENDIBLE HASHING

(M local

8 (01000
14 (01110

)
)

21 (10101) | B2 |0cal

25 (11001
29 (11101

)
)
)

—_
o

1101011 | B2 |ocal

20

Find A
hash(A) =14 =01110,

Insert B
hash(B) = 29 = 11101,

If the bucket still has capacity, store the index entry in it

21

EXTENDIBLE HASHING

8 (01000) | B |ocal
14 (01110)

Find A
hash(A) =14 =01110,

21 (10101) | 28 |ocal Insert B
25 (11001) hash(B) =29=11101 5

29 (11101)

local Insert C
hash(C) =5=00101,

EXTENDIBLE HASHING

1

8 (01000

(
14 (01110

)
)

00 | o=

B o 2
10 | o=
11

1

1

(

local

local

local

22

Find A
hash(A) =14 =01110,

Insert B
hash(B)=29=11101,

Insert C
hash(C) = 5 = 00101,

Split bucket if full (allocate new bucket, increase local, redistribute)

EXTENDIBLE HASHING

global

00

B o

10
11

3 bits now needed to

discriminate between

these two buckets =
double directory

(M |ocal
-

local
.
-
21(10101)

_

local

local

23

Find A
hash(A) =14 =01110,

Insert B
hash(B)=29=11101,

Insert C
hash(C) =5=00101,

EXTENDIBLE HASHING

-

-
-

-

-
-

24

Find A
hash(A) =14 =01110,

Insert B
hash(B)=29=11101,

Insert C
hash(C) =5=00101,

EXTENDIBLE HASHING

local

local

local

local

Find A
hash(A) =14 =01110,

Insert B
hash(B)=29=11101,

Insert C
hash(C) =5 = 00101,

25

DIRECTORY DOUBLING

Double directory by copying its original pointers and "fixing” pointer
to split bucket

Use of least significant bits enables efficient doubling via copying!

Splitting a bucket does not always require doubling the directory
Buckets with local depth < global depth have multiple pointers to them
Splitting such buckets does not require doubling

Modifying one or more bucket pointers in directory is sufficient

Directory can also shrink when buckets become empty

26

SUMMARY

Hash-based indexes

Best for equality searches, cannot support range searches

Static hashing

Can lead to long overflow chains

Extendible hashing

Avoids overflow chains by splitting a full bucket when a new entry is to be added to it

27

	Slide 1
	Slide 3: Recap: In-Memory Hash Table (From Algorithms & Data Structures Course)
	Slide 4: Collision Resolution
	Slide 5: Hashing in Databases
	Slide 6: Hash-Based Indexing
	Slide 7: Overview
	Slide 8: Static Chained Hashing
	Slide 9: Static Chained Hash Table
	Slide 10: Static Chained Hash Table Management
	Slide 11: Hash Collisions and Overflow Chains
	Slide 12: Hash Functions
	Slide 13: Static Hashing and Dynamic Files
	Slide 14: Extendible Hashing
	Slide 15: Extendible Hashing
	Slide 16: Global and Local Depth
	Slide 17: Extendible Hashing
	Slide 18: Extendible Hashing
	Slide 19: Extendible Hashing
	Slide 20: Extendible Hashing
	Slide 21: Extendible Hashing
	Slide 22: Extendible Hashing
	Slide 23: Extendible Hashing
	Slide 24: Extendible Hashing
	Slide 25: Extendible Hashing
	Slide 26: Directory Doubling
	Slide 27: Summary

