THE UNIVERSITY
of EDINBURGH QUERY EXECUTION OVERVIEW

SQL Query Relational Algebra
Advanced Database Systems SELECT . nane - R
Spring 2026 o Student S, Enrolled £ Student B ¢ ..y Enrolled))
AND E.cid = ‘INF-11199’ Q“g@’“_’;;’l_f;eerf&
P ‘ Equivalent to...
Lecture #11: Optimised Physical Query Plan Logical Query Plan
. o o
External Sorting & Aggregation R T e
t t
[Sort-merge join - o
S.sid = E.sid E.cid=‘INF-11199’
N . t
R&G: Chapters 13 & 14 / o Bttree But actually will >
E.cid= ‘INF-11199’ produce plan with S.sid = E.sid
scan operator code / ~
Student Enrolled Student Enrolled

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

1 2

QUERY PLANS AND OPERATORS WHY DO WE NEED SORTING?

Query plan = Network of operators able to evaluate a query Explicit sorting via the SQL ORDER BY clause
One operator may have different implementations SELECT A, B, C FROM R ORDER BY A;
-
All semantically equivalent fl cQt Client I\

Query Planning Implicit sorting, e.g., for duplicate elimination

But with different performance characteristics

| queryplanming |
SELECT DISTINCT A, B, C FROM R;
Focus of this lecture
Implementation of sort Implicit sorting, e.g., to prepare (sort-merge) equi-join
Implementation of (grouped by) aggregation SELECT R.A, S,C FROM R JOIN S ON R.B=S.B;
N / Grouping via group by, first step in bulk loading tree indexes,

sorted rid scans after access to unclustered indexes, etc.

SORTING

Afile is sorted with respect to key k and ordering ©, if for any
two records r; and r> with r; preceding r; in the file, their
corresponding keys are in ©-order:

ri®r,sri.k0Oryk

A key may be a single attribute or an ordered list of attributes.
In the latter case, the order is lexicographical
Consider key (A,B) and @ is <

ri<r; < ri.A<r,Av(ri.A=r,AANr.B<r,B)

SORTING ALGORITHMS

If data fits in memory, then we can use a standard sorting
algorithm like quick-sort

Problem: sort 100GB of data with 1GB of RAM

Why not virtual memory?

If data does not fit in memory, then we need to use a technique
that is aware of the cost of writing data out to disk

EXTERNAL SORTING

How can we sort a file of records whose size exceeds the available main
memory space (let alone the available buffer manager space) by far?

|dea: Divide and conquer

Sort chunks of data that fit in memory, then write back the sorted chunks to disk

Combine sorted chunks into a single larger file

Approach the task in two phases:
1. Sorting a file of arbitrary size is possible using only three buffer pages

2. Refine this algorithm to make effective use of larger buffer sizes

OVERVIEW

We will start with a simple example of a 2-way external merge sort
Files are broken up into N pages

The DBMS has a finite number of B fixed-size buffer pages

2-WAY EXTERNAL MERGE SORT

Pass #0
Read a page into memory, sort it, and write it back to disk (uses 1 buffer page)

Each sorted set of pages is called a run

Pass #1, #2, #3, ...

Recursively merge pairs of runs into runs twice as long (uses 3 buffer pages)
When input is consumed read next page from disk. When output is full, write to disk

MEMORY

o —
= pm TR O(=

DISK DISK

2-WAY EXTERNAL MERGE SORT

In each pass, we read and

PASS -

write each page in file oy Balzelaslzelselra] 2 [o] LPAGE
PASS

Number of passes #1

=1+[logaN] PASS

Total I/0 cost

= 2N-(# of passes) PASS

10

EXTERNAL MERGE SORT

Previous algorithm uses only three buffer pages (B = 3)

How can we make effective use of a larger buffer pool (B > 3)?
Reduce # of initial runs by using the full buffer space during in-memory sort

Reduce # of passes by merging B-17 runs at a time

- MEMORY
e B —
e —
OUTPUT

E— / ——
DISK DISK

EXTERNAL MERGE SORT

Pass #0
Use B buffer pages

Produce [N/ B] sorted runs of size B

Pass #1, #2, #3, ...

Merge B - 1 runs (i.e., multi-way merge)
Number of passes =1 + [logs.1[N / B] |

Total I/0 cost = 2N (# of passes)

11

12

EXAMPLE

Sort N = 108 page file with B = 5 buffer pages
Pass #0: [108/5] = 22 sorted runs of 5 pages each (last run is only 3 pages)
Pass #1: [22/4] = 6 sorted runs of 20 pages each (last run is only 8 pages)

Pass #2: [6/4] = 2 sorted runs of 80 pages and 28 pages
Pass #3: Sorted file of 108 pages

Number of passes =1+ [logs.1[N/B]| =1+ [logs22] =1 +[2.229..]
=4 passes

Total I/0O cost = 2N (# of passes) =2-108-4 = 864

NUMBER OF PASSES OF EXTERNAL SORT

30 -
-s- B=3 (two-way) <=e=B=5

@ 25 | =-B=10 B=100
§ -~ B=1,000 - B=100,000
S 20
o«
(o]
5 15 A
o)
€ i
S 10
zZ q

> pE—

H
0 T T T T T T 1
100 1,000 10,000 100,000 1,000,000 1E+07 1E+08

Number of Pages (N)

1E+09

13

14

USING B+ TREES FOR SORTING

If the table to be sorted has a B+ tree index on the sort attribute(s), we may
be better off by accessing the index and avoid external sorting

Retrieve sorted records by simply traversing the leaf pages of the tree

Cases to consider
Clustered B+ tree

Unclustered B+ tree

CASE 1: CLUSTERED B+ TREE

Traverse to the left-most leaf page,
then retrieve all leaf pages (variant A)

If variant B is used?
Additional cost of retrieving data
records: each page fetched just once

Always better than external sorting!

Index
(Directs search)

Data Records

Data Entries
2

(“Sequence Set"”)
Rs=~

17

18

CASE 2: UNCLUSTERED B+ TREE

Variant B for index entries

Chase each pointer to the page
that contains the data

This is almost always a bad idea

In general, one I/0 per data record

Index
(each contains rid of a data record) (Directs search)

Data Records

Data Entries

(“Sequence Set”)

19

ALTERNATIVE TO SORTING

What if we do not need the data to be ordered?
Forming groups in GROUP BY (no ordering)
Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario
Only need to remove duplicates, no need for ordering

Can be computationally cheaper than sorting

21

DUPLICATE ELIMINATION USING SORTING

Enrolled(sid, cid, grade)

SELECT DISTINCT cid sid cid grade
FROM Enrolled 123466 INFR-11011 65
WHERE grade < 90 123488 INFR-11122 95

123488 INFR-10070 80
123466 INFR-11122 70
123455 INFR-11011 75

sid cid grade cid cid
123466 INFR-11011 65 INFR-11011 INFR-10070
‘ 123488 INFR-10070 80 ‘ INFR-10070 ‘ INFR-11011
f 123466 INFR-11122 70 INFR-11122 INFRX1011
Filter Remove Sort X
123455 INFR-11011 75 INFR-11011 INFR-11122
Columns

Eliminate Duplicates

20

21

24

EXTERNAL HASHING

We cannot build an in-memory hash table if there is too much datal!

Start by splitting up data into smaller pieces!
Use a hash function h, to partition the data
Stream partitions to disk
If we have B pages of buffer, we can split the data into B-7 partitions

1 buffer page reserved for streaming data in

Partitions
- veworr IR
—— I ()
1 ~
DISK g oUrUTe g DISK

B main memory buffers

24

25

EXTERNAL HASHING

If partitions are small enough to fit in memory, we can load them in and
make an in-memory hash table for each one, one at a time

Then we can apply duplicate removal, aggregation, etc. in memory

Every tuple in a partition has the same value when h; is applied!

In-memory hash table must use a different hash function h, that is independent of h,

Partitions
Hash Table for Partition R;
] -
y Value
MEMORY
DISK

28

AGGREGATIONS

Collapse multiple tuples into a single scalar value (SUM, MIN, MAX, ...)

Hashing aggregates:
Populate an ephemeral hash table as the DBMS scans the relation. For each
record check whether there is already an entry in the hash table

DISTINCT: Discard duplicate

GROUP BY: Perform aggregate computation
SELECT A, MAX(B) FROM R
If everything fits in memory, then it's easy GROUP BY A:

If we have to spill to disk, then we need to be smarter...

25

28

29

HASHING AGGREGATE

Partition phase

Divide tuples into partitions based on hash key

Rehash phase

Build in-memory hash table for each partition and compute the aggregate

30

HASHING AGGREGATE PHASE #1: PARTITION

Use a hash function h, to split tuples into partitions on disk
We know that all matches live in the same partition

Partitions are “spilled” to disk via output buffers

Partitions

-

B main memory buffers

29

30

31

HASHING AGGREGATE PHASE #1: PARTITION

Enrolled(sid, cid, grade)

SELECT DISTINCT cid sid cid grade
FROM Enrolled 123466 INFR-11199 80
WHERE grade < 90 123488 INFR-11122 95

123488 INFR-10070 80
123466 INFR-11122 50

123455 INFR-11199 75

sid cid grade cid el INFR-11011
- INFR-10070
123466 INFR-11199 80 INFR-11199 - INFR-11011
‘ 123488 INFR-10070 80 ‘ INFR-10070 “-’@:: _______
. 123466 INFR-11122 50 INFR-11122 N
Filter Remove e
123455 INFR-11199 75 Columns INFR-11199 * | INFR-11122

B-1 partitions

32

HASHING AGGREGATE PHASE #2: REHASH

For each partition on disk:

Read it into memory and build an in-memory hash table
based on a second hash function h; (# hq)

Then go through each bucket of this hash table to bring
together matching tuples

No need to load the entire partition at once in memory
Can load several pages at a time

But the hash table built for each partition must fit in memory

If not enough memory, repeat Phase #1 on each partition with a different hash function

31

33

HASHING AGGREGATE PHASE #2: REHASH

Enrolled(sid, cid, grade)

SELECT DISTINCT cid sid cid grade
FROM Enrolled 123466 INFR-11011 80
WHERE grade < 90 123488 INFR-11122 95

123488 INFR-10070 80
123466 INFR-11122 50

123455 INFR-11011 75

Hash Table
multiplicity
INFR-11011 € —
INFR-10070 —.@ » INFR-T1011 | 2
INFR-11011 cid
Phase #1 INFR-10070 | 1
Partitions » R

INFR-10070

Key Value
INFR-11122 @ » INFR-11122
INFR-11122

32

34

HASHING SUMMARISATION

During the Rehash phase, store pairs of the form
GroupKey — RunningValue

When we want to insert a new tuple into the hash table
If we find a matching GroupKey, just update the RunningValue appropriately

Else insert a new GroupKey — RunningValue

33

34

HASHING SUMMARISATION

35

(INFR-11011, 80)

Phase #1 INFR-10070 | (1,80)

(INFR-10070, 80) () ‘ : i Final Result
] 0 INFR-11011
(INFR-11011, 75) (2,155) Cid

Running Totals Enrolled(sid, cid, grade)

SELECT cid, AVG(grade) AVG(col) ~ — (COUNT,SUM) sid cid grade

FROM Enrolled MIN(col) ~ — (MIN) 123466 INFR-11011 80
. MAX(col) — — (MAX)
GROUP BY cid SUM(col) ~ — (SUM) 123488 INFR-11122 95
COUNT(col) —> (COUNT) 123488 INFR-10070 80
123466 INFR-11122 50
123455 INFR-11011 75
Hash Table

AVG(grade)

77.5

o INFR-11011
Partitions »
INFR-10070

80

72.5

K Val
(INFR-11122, 50) £ L INFR-11122
(INFR-11122, 95) INFR-11122 | (2,145)

35

COST ANALYSIS

How big of a table can we hash using this approach?
B-1 “spill partitions” in Phase #1

Each partition (i.e., its hash table) should be no more than B pages big

Answer: B - (B-1)
A table of N pages needs about sqrt(N) buffer pages
Note: assumes hash distributes records evenly!

Use a “fudge factor” f> 1 to capture the (small) increase in size
between the partition and a hash table for that partition

Must be B > f- N/ (B-1); thus, we need approx. B > sqrt(f - N) buffer pages

36

CONCLUSION: SORTING VS. HASHING

External merge sort often finishes in 1-2 passes
Great if we need output to be sorted anyway

Not sensitive to duplicates or “bad” hash functions

Duplicate elimination

Hashing preferred as it scales with # of distinct values
Delete duplicates in first pass while partitioning
Vs. sort which scales with # of values

Group-by aggregation
Typically computed via hashing

37

37

36

