@\ THE UNIVERSITY
\#N/: of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #11:

External Sorting & Aggregation

R&G: Chapters 13 & 14

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

QUERY EXECUTION OVERVIEW

SQL Query Relational Algebra
SE:;:E; ;.:nzmet S E lled E ‘ s name (Oe . cid=TnF-11199" €
udent S, Enrolle
WHERE S.sid = E.sid Student P (;4-f <ig Enrolled))
AND E.cid = ‘INF-11199’ Query Parser &
Optimiser ,
‘ Equivalent to...
Optimised Physical Query Plan Logical Query Plan
sorting
1 S.name 1;[S.name
sort-merge join -
DqS.Sid=E.Sid ? E.cid=‘INF-11199’
N\ B+ tree But actually will
0) E cid= ‘INF-11199° produce plan with X S.sid = E.sid
scan \ operator code / ~
Student Enrolled Student Enrolled

QUERY PLANS AND OPERATORS

Query plan = Network of operators able to evaluate a query

One operator may have different implementations

. . SQL Client
All semantically equivalent ~ s

\
Query Planning

Operator Execution

But with different performance characteristics

Focus of this lecture

Implementation of sort

Implementation of (grouped by) aggregation

E Database j

WHY DO WE NEED SORTING?

Explicit sorting via the SQL ORDER BY clause

SELECT A, B, C FROM R ORDER BY A;

Implicit sorting, e.g., for duplicate elimination
SELECT DISTINCT A, B, C FROM R;
Implicit sorting, e.g., to prepare (sort-merge) equi-join

SELECT R.A, S,C FROM R JOIN S ON R.B=S.B;

Grouping via group by, first step in bulk loading tree indexes,
sorted rid scans after access to unclustered indexes, etc.

SORTING

A file is sorted with respect to key k and ordering O, if for any
two records r; and r, with r, preceding r, in the file, their
corresponding keys are in ©-order:

r,Or,=r.k0Or,k

A key may be a single attribute or an ordered list of attributes.
In the latter case, the order is lexicographical

Consider key (A,B)and O is <

r,<r, s r,.A<r,,Av (r,.,A=r,,ANr,.B<r,B)

SORTING ALGORITHMS

If data fits in memory, then we can use a standard sorting
algorithm like quick-sort

Problem: sort 100GB of data with 1GB of RAM

Why not virtual memory?

If data does not fit in memory, then we need to use a technique
that is aware of the cost of writing data out to disk

EXTERNAL SORTING

How can we sort a file of records whose size exceeds the available main
memory space (let alone the available buffer manager space) by far?

ldea: Divide and conquer

Sort chunks of data that fit in memory, then write back the sorted chunks to disk

Combine sorted chunks into a single larger file

Approach the task in two phases:
1. Sorting a file of arbitrary size is possible using only three buffer pages

2. Refine this algorithm to make effective use of larger buffer sizes

OVERVIEW

We will start with a simple example of a 2-way external merge sort
Files are broken up into N pages

The DBMS has a finite number of B fixed-size buffer pages

2-WAY EXTERNAL MERGE SORT

Pass #0

Read a page into memory, sort it, and write it back to disk (uses 1 buffer page)
Each sorted set of pages is called a run

Pass #1, #2, #3, ...

Recursively merge pairs of runs into runs twice as long (uses 3 buffer pages)
When input is consumed read next page from disk. When output is full, write to disk

<> MEMORY <>

INPUT 1

OUTPUT

INPUT 2

DISK DISK

2-WAY EXTERNAL MERGE SORT

In each pass, we read and
write each page in file

Number of passes
=1+ |log,N |

Total I/0 cost
= 2N (# of passes)

PASS
#0

PASS
#1

PASS
#2

PASS
#3

EOF
R N AL BB 1-PAGE
341|126 |49 | 78| 56| 1,3 2 0}
 J U J J 7 RUNS
2-PAGE
EEE o
J
-5 e 4-PAGE
4,4 3,5 RUNS
6,7 6
8,9 0)
< _—
el 8-PAGE
3 RUNS
3,4
4,5
6,6

7,8

9

?

10

EXTERNAL MERGE SORT

Previous algorithm uses only three buffer pages (B = 3)

How can we make effective use of a larger buffer pool (B > 3)?
Reduce # of initial runs by using the full buffer space during in-memory sort

Reduce # of passes by merging B- 1 runs at a time

INPUT B-1 DISK

INPUT 1 -
ll INPUT 2 \

OUTPUT

11

EXTERNAL MERGE SORT

Pass #0
Use B buffer pages

Produce [N/ B] sorted runs of size B

Pass #1, #2, #3, ...

Merge B - 1 runs (i.e., multi-way merge)
Number of passes =1 + | logg [N/ B] |

Total I/0 cost = 2N - (# of passes)

12

EXAMPLE

Sort N = 108 page file with B = 5 buffer pages
Pass #0: [108/5] = 22 sorted runs of 5 pages each (last run is only 3 pages)
Pass #1: [22/4| = 6 sorted runs of 20 pages each (last run is only 8 pages)

Pass #2: [6/4] = 2 sorted runs of 80 pages and 28 pages
Pass #3: Sorted file of 108 pages

Number of passes =1 + [logg [N/ B| | =1+[log,22]=1+[2.229...]
= 4 passes

Total I/0 cost = 2N - (# of passes) =2-108-4 = 864

13

14

NUMBER OF PASSES OF EXTERNAL SORT

30 ~

-s- B=3 (two-way) =e=B=5
-~ B=10 B=100
-e- B=1,000 -e- B=100,000

25

20 A

15 -

10 -

Number of Passes

5 -

O | | | | | | | 1
100 1,000 10,000 100,000 1,000,000 1E+07 1E+08 1E+09

Number of Pages (N)

USING B+ TREES FOR SORTING

If the table to be sorted has a B+ tree index on the sort attribute(s), we may
be better off by accessing the index and avoid external sorting

Retrieve sorted records by simply traversing the leaf pages of the tree

Cases to consider
Clustered B+ tree

Unclustered B+ tree

17

18

CASE 1: CLUSTERED B+ TREE

Traverse to the left-most leaf page, ndey
then retrieve all leaf pages (variant A) (birects Sea“h)

Data Entries

(" é%q et

Data Records

If variant B is used?
Additional cost of retrieving data
records: each page fetched just once

Always better than external sorting!

19

CASE 2: UNCLUSTERED B+ TREE

Variant B for index entries

Index
(each contains rid of a data record) (Directs search) ‘
Data Entries

Chase each pointer to the page ("Sequence Set’)
that contains the data

This is almost always a bad idea

Data Records

In general, one /0 per data record

20

DUPLICATE ELIMINATION USING SORTING

Enrolled(sid, cid, grade)

SELECT DISTINCT cid sid cid PELC
FROM Enrolled 123466 INFR-11011 65
WHERE grade < 90 123488 INFR-11122 95
123488 INFR-10070 80
123466 INFR-11122 710
123455 INFR-11011 75

sid cid cid cid

123466 INFR-11011 65 INFR-11011 INFR-10070
; 1234 INFR-11122 7 INFR-11122 INFRRI011
Filter 3460 0 Remove Sort X

123455 INFR-11011 75 COlumnS INFR-11011 INFR-11122

Eliminate Duplicates

ALTERNATIVE TO SORTING

What if we do not need the data to be ordered?

Forming groups in GROUP BY (no ordering)
Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario

Only need to remove duplicates, no need for ordering

Can be computationally cheaper than sorting

21

24

EXTERNAL HASHING

We cannot build an in-memory hash table if there is too much data!

Start by splitting up data into smaller pieces!
Use a hash function h, to partition the data
Stream partitions to disk

If we have B pages of buffer, we can split the data into B-1 partitions

1 buffer page reserved for streaming data in

Partitions

MEMORY o — -
e ,,,, g [%
——— 1 [-

-
—— .
— .
Y L~
DISK DISK

Bmain memory buffers

EXTERNAL HASHING

If partitions are small enough to fitin memory, we can load them in and
make an in-memory hash table for each one, one at a time

Then we can apply duplicate removal, aggregation, etc. in memory
Every tuple in a partition has the same value when h, is applied!

In-memory hash table must use a different hash function h, that is independent of h,,

Partitions

- Hash Table for Partition R;

Key Value

MEMORY

DISK

25

28

AGGREGATIONS

Collapse multiple tuples into a single scalar value (SUM, MIN, MAX, ...)

Hashing aggregates:
Populate an ephemeral hash table as the DBMS scans the relation. For each
record check whether there is already an entry in the hash table

DISTINCT: Discard duplicate

GROUP BY: Perform aggregate computation
: Hino fits | hen it SELECT A, MAX(B) FROM R
IT everything fits in memory, then it's easy GROUP BY A:

If we have to spill to disk, then we need to be smarter...

HASHING AGGREGATE

Partition phase

Divide tuples into partitions based on hash key

Rehash phase

Build in-memory hash table for each partition and compute the aggregate

29

30

HASHING AGGREGATE PHASE #1: PARTITION

Use a hash function h, to split tuples into partitions on disk
We know that all matches live in the same partition

Partitions are “spilled” to disk via output buffers

Partitions

MEMORY OUTPUT 1

OUTPUT 2

OUTPUT B-1

B main memory buffers

HASHING AGGREGATE PHASE #1: PARTITION

Enrolled(sid, cid, grade)

SELECT DISTINCT cid
FROM Enrolled
WHERE grade < 90

sid cid
123466 INFR-11199 80
‘ 123488 INFR-10070 80
- 1234 INFR-11122
Filter {12246 0
123455 INFR-11199 75

—

Remove
Columns

cid

INFR-11199

INFR-10070

INFR-11122

INFR-11199

sid cid grade
123466 INFR-11199 80
123488 INFR-11122 95
123488 INFR-10070 80
123466 INFR-11122 50
123455 INFR-11199 75
__-v | INFR-11011
gl INFR-10070
- INFR-11011
ROS
\\\\\ _______ R
"= | INFR-11122

B-1 partitions

31

32

HASHING AGGREGATE PHASE #2: REHASH

For each partition on disk:

Read it into memory and build an in-memory hash table
based on a second hash function h, (# h,)

Then go through each bucket of this hash table to bring
together matching tuples

No need to load the entire partition at once in memory

Can load several pages at a time
But the hash table built for each partition must fit in memory
If not enough memory, repeat Phase #1 on each partition with a different hash function

HASHING AGGREGATE PHASE #2: REHASH

Enrolled(sid, cid, grade)

SELECT DISTINCT cid sid cid grade
FROM Enrolled 123466 INFR-11011 80
WHERE grade < 90 123488 INFR-11122 95

123488 INFR-10070 380
123466 INFR-11122 50
123455 INFR-11011 75

Hash Table -
- multiplicity
INFR-11011
INFR-10070
INFR-11011 cid
Phase #1
Partitions » INFR-11011
" val INFR-10070
- ey alue
INFR-11122 4@ » INFR-11129
:

HASHING SUMMARISATION

During the Rehash phase, store pairs of the form
GroupKey — RunningValue

When we want to insert a new tuple into the hash table
If we find a matching GroupKey, just update the RunningValue appropriately

Else insert a new GroupKey — RunningValue

34

HASHING SUMMARISATION

FROM Enrolled
GROUP BY cid

SELECT cid, AVG(grade)

AVG(col) — (COUNT, SUM)

MIN(col) — (MIN)

MAX(col) — (MAX)

SUM(col) — (SUM)

COUNT(col) — (COUNT)
Hash Table

(INFR-11011, 80)
(INFR-10070, 80)

(INFR-11@11, 75)
Phase #1

) m

Partitions -

(INFR-11122, 50)
(INFR-11122, 95)

o=

Running Totals

INFR-11011

INFR-10070

Key Value

INFR-11122] (2,145)

35

Enrolled(sid, cid, grade)

sid cid grade
123466 INFR-11011 80
123488 INFR-11122 95
123488 INFR-10070 80
123466 INFR-11122 50
123455 INFR-11011 75
Final Result
cid AVG(grade)

» INFR-11011 77.5
INFR-10070 80

INFR-11122 72.5

CoST ANALYSIS

How big of a table can we hash using this approach?
B-1 “spill partitions” in Phase #1
Each partition (i.e., its hash table) should be no more than B pages big

Answer: B - (B-1)
A table of N pages needs about sqrt(N) buffer pages
Note: assumes hash distributes records evenly!

Use a “fudge factor” f > 1 to capture the (small) increase in size
between the partition and a hash table for that partition

Must be B> f- N/ (B-1); thus, we need approx. B > sqrt(f - N) buffer pages

36

37

CONCLUSION: SORTING VS. HASHING

External merge sort often finishes in 1-2 passes

Great if we need output to be sorted anyway

Not sensitive to duplicates or “bad” hash functions

Duplicate elimination

Hashing preferred as it scales with # of distinct values
Delete duplicates in first pass while partitioning

Vs. sort which scales with # of values

Group-by aggregation
Typically computed via hashing

	Slide 1
	Slide 2: Query Execution Overview
	Slide 3: Query Plans and Operators
	Slide 4: Why Do We Need Sorting?
	Slide 5: Sorting
	Slide 6: Sorting Algorithms
	Slide 7: External Sorting
	Slide 8: Overview
	Slide 9: 2-Way External Merge Sort
	Slide 10: 2-Way External Merge Sort
	Slide 11: External Merge Sort
	Slide 12: External Merge Sort
	Slide 13: Example
	Slide 14: Number of Passes of External Sort
	Slide 17: Using B+ Trees for Sorting
	Slide 18: Case 1: Clustered B+ Tree
	Slide 19: Case 2: Unclustered B+ Tree
	Slide 20: Duplicate Elimination using Sorting
	Slide 21: Alternative to Sorting
	Slide 24: External Hashing
	Slide 25: External Hashing
	Slide 28: Aggregations
	Slide 29: Hashing Aggregate
	Slide 30: Hashing Aggregate Phase #1: Partition
	Slide 31: Hashing Aggregate Phase #1: Partition
	Slide 32: Hashing Aggregate Phase #2: Rehash
	Slide 33: Hashing Aggregate Phase #2: Rehash
	Slide 34: Hashing Summarisation
	Slide 35: Hashing Summarisation
	Slide 36: Cost Analysis
	Slide 37: Conclusion: Sorting vs. Hashing

