THE UNIVERSITY
of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #12:
Joins

R&G: Chapter 14

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

JOIN OPERATOR

For atupler e R and a tuple s € S that
match on join attributes, concatenate
r and s together into a new tuple

Subsequent operators in the query plan
never need to go back to the base tables
to get more data

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

1}[R.id, S.city

N R.id =S.id
A
Gvalue>160
\

R S

1

JOINS: OVERVIEW

Joins are among the most expensive operations
of joins often used as a measure of query complexity

Join of 10s of tables common in enterprise apps

Naive implementation: R xS = o(R x S)
Enumerate the cross product, then filter using the join condition

Inefficient because the cross product is large

Three classes of join algorithms:

Nested loops
Sort-merge No particular algorithm

works well in all scenarios
Hash

I/0 COST ANALYSIS

Assume:
Table R has M pages and m tuples in total

Table S has N pages and n tuples in total

Cost Metric: # of I/0s to compute join
Ignore output costs (same for all join algorithms)

Ignore CPU costs

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

SIMPLE NESTED LOOPS JOIN

foreach tuple r € R:
foreach tuple s € S:
emit if r and s match

<+«—— Quter table
<+<— |nner table

o . R(id, ...) S(id, ...)
Why is this algorithm bad?
For every tuple in R, it scans S once N pages
o - M pages n tuples
Terrible if S does not fit in memory
m tuples
Cost: M+ (m - N)

SIMPLE NESTED LOOPS JOIN

SNLJ (but with page fetches written out explicitly)

foreach page P; € R:
foreach tuple r e Pg:
foreach page Ps € S:
foreach tuple s € Ps:
emit if r and s match

Can we do better?
We scan S for every tuple in R,

... but we had to load an entire page of R into memory to get that tuple!
Instead of finding the tuples in S that match a tuple in R,

... do the check for all tuples in a page in R at once

SIMPLE NESTED LOOPS JOIN

Example database:
M = 1000, m = 100,000
N =500, n = 40,000
Cost analysis:

M + (m - N)= 1000 + (100,000 - 500) = 50,001,000 1/0s
At 0.1ms per 1/0, total time = 1.4 hours

What if smaller table (S) is used as the outer table?

N + (n - M) =500 + (40,000 - 1000) = 40,000,500 1/0s
At 0.1ms per 1/0, total time = 1.1 hours

PAGE NESTED LOOPS JOIN

foreach page py € R:
foreach page ps € S:
foreach tuple r € pg:
foreach tuple s € ps:
emit if r and s match

This algorithm makes fewer disk accesses R(id, ... 5(id, ...
For every page in R, it scans S once N pages
M pages n tuples
Cost: M+ (M - N) m tuples

10

PAGE NESTED LOOPS JOIN

Example database:
M =1000, m = 100,000
N =500, n=40,000

Which one should be the outer table?

The smaller table in terms of # of pages

Cost analysis:

N+ (M - N) =500 + (1000 - 500) = 500,500 I/Os
At 0.1ms per I/0, total time = 50 seconds

How many memory buffers are needed?
Just 3: one for each input, one for output

11

BLOCK NESTED LOOPS JOIN

foreach B-2 block by € R:
foreach block bg € S:
foreach tuple r e bg:
foreach tuple s € bg:
emit if r and s match

What if we have B buffers available?
B-2 buffers for scanning the outer table
1 buffer for scanning the inner table

1 buffer for storing the output

R(id, ...) S(id, ...)
N pages
M pages n tuples
m tuples

BLOCK NESTED LOOPS JOIN

foreach B-2 block by € R:
foreach block bg € S:
foreach tuple r € bg:
foreach tuple s € bg:
emit if r and s match

Cost: M+ ([M / (B-2)]- N)

If the outer relation (R) fits in memory (VM < B - 2)
Cost: M+ N = 1000 + 500 = 1500 I/0Os (optimal cost)
At 0.1ms per I/O, total time = 0.15 seconds

R(id, ...) S(d, ..)
N pages
M pages n tuples
m tuples

12

13

INDEX NESTED LOOPS JOIN

Why do simple nested loops joins suck?

For each tuple in the outer table, we have to do a sequential scan

to check for a match in the inner table

Can we accelerate the join using an index?

Use an index to find inner tuple matches

We could use an existing index or even build one on the fly

The index must match the join condition

14

INDEX NESTED LOOPS JOIN

foreach tuple r € R:

foreach tuple s € Index(r; = s;) Index(S.id)
emit if r and s match ;
Cost: M + m - (cost to find all matching S tuples))
R(id, ...) S(id, ...)
Index access cost per R tuple:
N pages
B+ tree: 2-4 1/0s to reach a leaf + fetch matching S tuples M pages n tuples
Clustered: M + m - (Search + # matching pages) m tuples
Unclustered: M + m - (Search + up to # matching tuples))

Hash index: 1-2 1/0s to reach the target bucket

INDEX NESTED LOOPS JOIN

foreach tuple r € R:

foreach tuple s € Index(r; = s;) Index(S.id)
emit if r and s match ;
Cost: M + m - (cost to find all matching S tuples))
R(id, ...) S(id, ...)
The cost depends on the size of the join result
N pages
Using an index pays off if the join is selective M pages n tuples
m tuples

15

RECAP: NESTED LOOPS JOINS

Pick the smaller table as the outer table
Buffer as much of the outer table in memory as possible

Loop over the inner table

Allows arbitrary join conditions

Or use an index over the inner table

Only if matches the join condition

16

SORT-MERGE JOIN

Requires equality predicate

Equi-joins & natural joins

Phase #1: Sort
Sort both tables on the join key(s)

E.g. by using the external merge sort

Input might already be sorted... why?

Phase #2: Merge

Scan the two sorted tables in parallel and emit matching tuples

17

18

SORT-MERGE JOIN

sort R,S on join key A
r « position of first tuple in Rsorted
s « position of first tuple in Ssorted
while r # EOF and s # EOF:
if r.A > s.A:
advance s
else if r.A < s.A:
advance r
else if r.A = s.A:
emit (r,s)

assumes no duplicates in R
(the merge phase could be easily
extended to support duplicates)

advance s

19

SORT-MERGE JOIN

R(id, name)

600 | Daniel

200 | Michael

100§ Alice

300 | Bob

500) Carrol

700§ Lucia

400 | John

t*

Sort!

S(id, value, city)

id value city

SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id

100 ff 2222 Edinburgh

500 | 7777 Edinburgh AND S.value > 100
400 || 6666 London

100 | 9999 London

200 || 8888 Oxford

*
Sort!

21

SORT-MERGE JOIN

R(id, name) s(id, value, city) SELECT R.id, S.city
id | name id | value city FROM R, S
100 | Alice 100 2222 Edinburgh WHERE R.id = S.id
200 § Michael 100 9999 London AND S.value > 100
300 § Bob 200f 8888 Oxford
400§ John 400 6666 London
500 § Carrol 500 | 7777 Edinburgh
600 || Daniel
700 | Lucia f

f Sort!

Sort!

20

21

SORT-MERGE JOIN

R(id, name)

» 100§ Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

s(id, value, city)

» 100 | 2222

SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id

Edinburgh
100 9999 London AND S.value > 100
200 8888 Oxford
400 6666 London
500 7777 Edinburgh

22

SORT-MERGE JOIN

R(id, name) s(id, value, city)

» 100 § Alice » 100 | 2222 Edinburgh
200 Michael 100 9999 London
300 Bob 200 8888 Oxford
400 John 400 6666 London
500 Carrol 500 7777 Edinburgh
600 Daniel
700 Lucia

23

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city
100 Alice 100 2222 Edinburgh

23

SORT-MERGE JOIN

R(id, name) s(id, value, city)

24

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

d ame id value city
» 100§ Alice 100 2222 Edinburgh
200 Michael » 100 f| 9999 London
300 Bob 200 8888 Oxford
400 John 400 6666 London
500 Carrol 500 7777 Edinburgh
600 Daniel
700 Lucia

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London

SORT-MERGE JOIN

R(id, name) s(id, value, city)

d ame id value city
» 100 § Alice 100 2222 Edinburgh
200 Michael 100 9999 London
300 Bob » 200 8888 Oxford
400 John 400 6666 London
500 Carrol 500 7777 Edinburgh
600 Daniel
700 Lucia

25

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London

25

SORT-MERGE JOIN

R(id, name) s(id, value, city)

m id value city

26

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

100 Alice 100 2222 Edinburgh
» 200 § Michael 100 9999 London

300 Bob » 200 | 8888 Oxford

400 John 400 6666 London

500 Carrol 500 7777 Edinburgh

600 Daniel

700 Lucia

Output Buffer
100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford

R(id, name)

100 Alice
» 200 | Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

SORT-MERGE JOIN

S(id, value, city)
id value city
100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 || 6666 London

500 7777 Edinburgh

27

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

Output Buffer
100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford

R(id, name)
[id _nane |
100 Alice
200 Michael
» 300 | Bob

400 John
500 Carrol
600 Daniel
700 Lucia

SORT-MERGE JOIN

S(id, value, city)
id value city
100 2222 Edinburgh

100 9999 London

28

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

200 8888 Oxford

400 || 6666 London

500 7777 Edinburgh

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford

28

R(id, name)

100 Alice
200 Michael
300 Bob
» 400 | John
500 Carrol
600 Daniel
700 Lucia

27
29
R(id, name) S(id, value, city) SELECT R.id, S.city
m id value city FROM R, S
100 Alice 100 2222 Edinburgh WHERE R.id = S.id
200 Michael 100 9999 London AND S.value > 100
300 Bob 200 8888 Oxford
» 400§ John 400 | 6666 London
500 Carrol 500 7777 Edinburgh Output Buffer
600 Daniel
N R.id R.name S.id S.value S.city
700 Lucia
100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford
400 John 400 6666 London
29

SORT-MERGE JOIN

S(id, value, city)
id value city
100 2222 Edinburgh

100 9999 London

30

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford
400 John 400 6666 London

30

31

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city
m id value city FROM R, S
100 Alice 100 2222 Edinburgh WHERE R.id = S.id
200 Michael 100 9999 London AND S.value > 100
300 Bob 200 8888 Oxford
400 John 400 6666 London
» 500 § Carrol » 500 | 7777 Edinburgh Output Buffer
600 Daniel
.
700 Lucia

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford
400 John 400 6666 London
500 Carrol 500 7777 Edinburgh

31

33

SORT-MERGE JOIN

Example database:
M = 1000, m = 100,000
N =500, n = 40,000

With 100 buffer pages, both R and S can be sorted in two passes:
Sort cost (R)=2-1000 -2 =40001/0s
Sort cost (S)=2-500-2=20001/0s
Merge cost = 1000 + 500 = 1500 1/0s
Total cost = 4000 + 2000 + 1500 = 7500 1/0s
At 0.1ms per /O, total time = 0.75 seconds

32

SORT-MERGE JOIN

Sort Cost (R) = 2M - (1 + [logs.1 [M / B]]) (= 2M - # of passes)

Sort Cost (S) = 2N - (1 + [logg. [N / B]]) (= 2N - # of passes)

Merge Cost: M + N

The worst case for the merging phase is
when the join attribute of all the tuples in
both relations contain the same value

R(id, ...) S(id, ...)

N pages
M pages n tuples
Merge Cost: M+ m - N (very unlikely!) m tuples

Sort-merge degenerates to simple nested-loops

Total Cost: Sort + Merge

32

34

SORT-MERGE JOIN REFINEMENT

Combine the last pass of merge-sort with the merge phase of join
Possible when the sum of # of runs in R and S in the penultimate (second-to-last)
merge pass of sorting is at most B - 1

Example for 2-pass sort-merge join
Read R and write out sorted runs (pass 0)

Read S and write out sorted runs (pass 0)
Merge R-runs and S-runs, while finding R « S matches

Total cost =2M + 2N + (M + N) = 2000 + 1000 + 1500 = 4500 1/0s

Eliminates one full read and write of R and S

33

34

35

WHEN IS SORT-MERGE JOIN USEFUL?

One or both tables are already sorted on the join key
Output must be sorted on join key (e.g., ORDER BY clause)
Typically used for equi-joins only

Achieves highly sequential access

Weapon of choice for very large datasets

36

BASIC IN-MEMORY HASH JOIN

Requires equality predicate

Phase #1: Build

Scan the outer relation and build a hash table using a hash function h on join attributes
Key: the attribute(s) that the query is joining the tables on

Value: full tuple or tuple identifier (used in column stores)

Phase #2: Probe

Scan the inner relation and use h on each tuple to jump to a location in the hash table

Find matching tuples there

35

37

BASIC IN-MEMORY HASH JOIN

build hash table HT; for R
foreach tuple s € S
emit if h(s) e HTy

Hash Table
R(id, ...) HTr S,)
1d, ...
M pages @ - : N pages
[M

37

36

38

HASH JOIN

What if both relations cannot fit in memory?

Idea: Decompose into smaller “partial joins”

If tuple r € R and tuple s € S satisfy the equi-join condition,

then they have the same value for the join attributes

If that value is hashed to some value i, tuple r has to be in
partition Rjand tuple s in partition S;

Thus, R-tuples in Rj need only to be compared with S-tuplesin S;

38

39

GRACE HASH JOIN

Phase #1: Partition
Partition tuples from R and S on join attribute using a hash function h
Store partitions of R and S on scratch disk

All tuples for a given join key in same partition

Partitions of R Partitions of S

R(id, ...) — —
s(id, ...)
0
1
M pages @ » 2 «@ N pages
max

39

41

GRACE HASH JOIN

If partitions do not fit in memory, use recursive partitioning with
hash function h (# h) to split the partitions into chunks that will fit

In common cases, we have enough buffers to fit each pair of partitions

Partition Phase

Read + write both tables =2 (M + N) I/Os R(id, ...) S(id, ...)
Build & Probe Phase N pages
M pages n tuples
Read both tables =M + N I1/0s m tuples

Total cost: 3 (M + N)

41

40

GRACE HASH JOIN

Phase #2: Build & Probe

Join each pair of matching

build hash table HTg,s for Re
foreach tuple s € Sp:

partitions between R and S emit if h(s) € HTg,

Partitiong"of"ﬁ.' Partitionsof S .
R(id, ...) - -
S(id,
5 (id, ...)
1
M pages 5 N pages
max

40

42

GRACE HASH JOIN

Example database:
M =1000, m = 100,000
N =500, n = 40,000

Cost Analysis:
3-(M+N)=3-(1000 + 500) = 4500 1/0s
At 0.1ms per I/0, total time = 0.45 seconds

42

43

HASH JOIN vS. SORT-MERGE JOIN

Sorting pros:

Good if input already sorted, or need output sorted

Not sensitive to data skew or bad hash functions

Hashing pros:
For join: # of passes depends on size of smaller relation
E.g. if smaller relation is < B, basic in-memory hashing is great

Good if input already hashed, or need output hashed

43

45

SUMMARY

Nested Loops Index Nested Loops
Works for arbitrary join condition When you already have an index on one side
Make sure to utilize memory in blocks For equi-joins mostly

Use the smaller table as the outer table For inequality joins needs a (clustered) B+-tree index

Sort/Hash
For equi-joins only, no index required
Hashing better if one relation is much smaller than other

Sorting better on non-uniform data & when results need to be sorted

No clear winners - may want to implement them all

Be sure you know the cost model for each. You will need it for query optimization!

45

JOIN ALGORITHMS: SUMMARY

JOIN ALGORITHM 1/0 COST TOTAL TIME
Simple Nested Loops Join M+ (m- N) 1.4 hours
Page Nested Loops Join M+ (M- N) 50 seconds
(using 2 input and 1 output buffer)

R Sl AR varies

Index Nested Loops Join M + (m - access cost) varies
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3(M+N) 0.45 seconds
Nested Loops or Hash Join M+N 0.15 seconds

(one relation fits in memory)

44

44

