A9 THE UNIVERSITY

N/ of EDINBURGH

Advanced Database Systems
Spring 2026

Lecture #12:
Joins

R&G: Chapter 14

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

JOIN OPERATOR

For a tupler e Rand a tuple s € S that
match on join attributes, concatenate
r and s together into a new tuple

Subsequent operators in the query plan
never need to go back to the base tables
to get more data

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

’E[R.id, S.city

D} k.id=s. i
\

G value>100

R S

JOINS: OVERVIEW

Joins are among the most expensive operations

of joins often used as a measure of query complexity
Join of 10s of tables common in enterprise apps

Naive implementation: R «.S = o (R x S)
Enumerate the cross product, then filter using the join condition
Inefficient because the cross product is large

Three classes of join algorithms:
Nested loops
No particular algorithm

Sort-merge . .
works well in all scenarios

Hash

|/O COST ANALYSIS

Assume;

Table R has M pages and m tuples in total

Table S has N pages and n tuples in total

Cost Metric: # of I/0s to compute join

lgnore output costs (same for all join algorithms)

lgnore CPU costs

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

SIMPLE NESTED LOOPS JOIN

foreach tuple r € R: <«—— OQuter table
foreach tuple s € S: <— Innertable
emit 1f r and s match

R(id, ...) S(id, ...)

Why is this algorithm bad?

For every tuple in R, it scans S once N pages
M pages n tuples

Terrible if S does not fit in memory

m tuples

Cost: M+ (m - N)

SIMPLE NESTED LOOPS JOIN

Example database:
M = 1000, m = 100,000
N =500, n = 40,000

Cost analysis:
M+ (m - N)=1000 + (100,000 - 500) = 50,001,000 1/0s
At 0.1Tms per 1I/0, total time = 1.4 hours

What if smaller table (S) is used as the outer table?
N+ (n - M) =500 + (40,000 - 1000) = 40,000,500 1I/0s
At 0.1ms per I/0, total time = 1.1 hours

SIMPLE NESTED LOOPS JOIN

SNLJ (but with page fetches written out explicitly)

foreach page P; € R:

flip loops

foreach tuple s € Ps:
emit if r and s match

Can we do better?
We scan S for every tuple in R,
... but we had to load an entire page of R into memory to get that tuple!
Instead of finding the tuples in S that match a tuple in R,

... do the check for all tuples in a page in R at once

PAGE NESTED LOOPS JOIN

foreach page p; € R:
foreach page ps € S:
foreach tuple r € pg:
foreach tuple s € pq:
emit if r and s match

This algorithm makes fewer disk accesses R(id, ...)

S(id, ...)

For every page in R, it scans S once

M pages
Cost: M + (M - N) m tuples

N pages
n tuples

10

PAGE NESTED LOOPS JOIN

Example database:
M = 1000, m = 100,000
N =500, n =40,000

Which one should be the outer table?

The smaller table in terms of # of pages

Cost analysis:
N + (M - N) =500 + (1000 - 500) = 500,500 I/Os
At 0.1Tms per I/0, total time = 50 seconds

How many memory buffers are needed?

Just 3: one for each input, one for output

11

BLOCK NESTED LOOPS JOIN

foreach B-2 block b, € R:
foreach block b € S:
foreach tuple r € bg:
foreach tuple s € bq:
emit if r and s match

What if we have B buffers available?
B-2 buffers for scanning the outer table
1 buffer for scanning the inner table

1 buffer for storing the output

R(id, ...) S(id, ...)
N pages
M pages n tuples
m tuples

12

BLOCK NESTED LOOPS JOIN

foreach B-2 block b, € R:
foreach block b € S:
foreach tuple r € bg:
foreach tuple s € bq:
emit if r and s match

Cost: M+ ([M / (B-2)]- N)

If the outer relation (R) fits in memory (M < B - 2)
Cost: M+ N =1000 + 500 = 1500 I/0Os (optimal cost)
At 0.1Tms per 1I/0, total time = 0.15 seconds

R(id, ...) S(id, ...)
N pages
M pages n tuples
m tuples

13

INDEX NESTED LOOPS JOIN

Why do simple nested loops joins suck?

For each tuple in the outer table, we have to do a sequential scan
to check for a match in the inner table

Can we accelerate the join using an index?

Use an index to find inner tuple matches

We could use an existing index or even build one on the fly

The index must match the join condition

14

INDEX NESTED LOOPS JOIN

foreach tuple r € R:

Index access cost per R tuple:

foreach tuple s € Index(r; = s;) Index(S.id)
emit if r and s match
Cost: M+ m - (cost to find all matching S tuples)
R(id, ...) S(id, ...)
_ N pages
B+ tree: 2-4 1/0s to reach a leaf + fetch matching S tuples M pages n tuples
Clustered: M + m - (Search + # matching pages) m tuples
Unclustered: M + m - (Search + up to # matching tuples)

Hash index: 1-2 1/Os to reach the target bucket

15

INDEX NESTED LOOPS JOIN

foreach tuple r € R:

foreach tuple s € Index(r; = s;) Index(S.id)
emit if r and s match ::
Cost: M+ m - (cost to find all matching S tuples)
R(id, ...) S(id, ...)
The cost depends on the size of the join result
N pages
Using an index pays off if the join is selective M pages n tuples

m tuples

16

RECAP: NESTED LOOPS JOINS

Pick the smaller table as the outer table
Buffer as much of the outer table in memory as possible

Loop over the inner table

Allows arbitrary join conditions

Or use an index over the inner table

Only if matches the join condition

17

SORT-MERGE JOIN

Requires equality predicate

Equi-joins & natural joins

Phase #1: Sort

Sort both tables on the join key(s)

E.g. by using the external merge sort

Input might already be sorted... why?

Phase #2: Merge

Scan the two sorted tables in parallel and emit matching tuples

18

SORT-MERGE JOIN

sort R,S on join key A

while r # EOF and s # EOF:
if r.A > s.A:
advance s
else if r.A < s.A:
advance r
else if r.A = s.A:
emit (r,s)
advance s

r « position of first tuple in R
s « position of first tuple in S

sorted

sorted

assumes no duplicatesin R
(the merge phase could be easily
extended to support duplicates)

19

SORT-MERGE JOIN

R(id, name)

Daniel

Michael

Alice

Bob

Carrol

Lucia

Sort!

John

S(id, value, city)

Edinburgh
1777 Edinburgh
6666 London
9999 London
8888 Oxford

Sort!

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

20

SORT-MERGE JOIN

R(id, name)

Alice

Michael

Bob

John

Carrol

Daniel

Sort!

Lucia

S(id, value, city)

Edinburgh
9999 London
8888 Oxford
6666 London
1777 Edinburgh

Sort!

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

21

SORT-MERGE JOIN

»

R(id, name)

id name

100 | Alice

200 Michael

S(id, value, city)

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

300 Bob
400 John
500 Carrol
600 Daniel

id value city

100 § 2222 Edinburgh
100 9999 London
200 8888 Oxford
400 6666 London
500 7777 Edinburgh

700 Lucia

22

23

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city
id name id value city FROM R, S
» Alice 100 1 2222 Edinburgh WHERE R.id = S.id
200 Michael 100 9999 London AND S.value > 100
300 Bob 200 8888 Oxford
400 John 400 6666 London
500 Carrol 500 7777 Edinburgh Output Buffer
600 Daniel
00 Lucia R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

24

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city

id name FROM R, S

Alice Edinburgh WHERE R.id = S.id

200 Michael 9999 London AND S.value > 100
300 Bob 200 8888 Oxford

400 John 400 6666 London

500 Carrol 500 7777 Edinburgh Output Buffer

600 Daniel

T R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London

25

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city
id name id value city FROM R, S
» Alice 100 2222 Edinburgh WHERE R.id = S.id
200 Michael 100 9999 London AND S.value > 100
300 Bob 200 8888 Oxford
400 John 400 6666 London
500 Carrol 500 7777 Edinburgh Output Buffer
600 Daniel
00 Lucia R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London

26

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city

' id value city FROM R, S

100 Alice 100 2222 Edinburgh WHERE R.id = S.id
Michael 100 9999 London AND S.value > 100

300 Bob 200 8888 Oxford

400 John 400 6666 London

500 Carrol 500 7777 Edinburgh Output Buffer

600 Daniel

T R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford

SORT-MERGE JOIN

R(id, name)

100

Alice

Michael
300 Bob
400 John
500 Carrol
600 Daniel
700 Lucia

S(id, value, city)

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford
» 6666 London

500 7777 Edinburgh

27

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city
100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London
200 Michael 200 8888 Oxford

SORT-MERGE JOIN

»

R(id, name)

‘1@@ Alice

200 Michael
Iﬁﬂ! Bob

400 John
500 Carrol
600 Daniel
700 Lucia

S(id, value, city)

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford
» 6666 London

500 7777 Edinburgh

28

SELECT R.id, S.city
FROM R, S

WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city
100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London
200 Michael 200 8888 Oxford

29

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city
m id value city FROM R, S
100 Alice 100 2222 Edinburgh WHERE R.id = S.id
200 Michael 100 9999 London AND S.value > 100
300 Bob 200 8883 Oxford
» John » 6666 London
500 Carrol 500 7777 Edinburgh Output Buffer
600 Daniel
T R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford
400 John 400 6666 London

30

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city
m id value city FROM R, S
100 Alice 100 2222 Edinburgh WHERE R.id = S.id
200 Michael 100 9999 London AND S.value > 100
300 Bob 200 8883 Oxford
» John 400 6666 London
500 Carrol » 7777 Edinburgh Output Buffer
600 Daniel
T R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford
400 John 400 6666 London

31

SORT-MERGE JOIN

R(id, name) S(id, value, city) SELECT R.id, S.city
id name W el @ FROM R, S
100 Alice 100 2222 Edinburgh WHERE R.id = S.1id
200 Michael 100 9999 London AND S.value > 100
300 Bob 200 8888 Oxford
400 John 400 6666 London
» Carrol » 1777 Edinburgh Output Buffer
600 Daniel
T R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh
100 Alice 100 9999 London
200 Michael 200 8888 Oxford
400 John 400 6666 London
500 Carrol 500 7777 Edinburgh

SORT-MERGE JOIN

Sort Cost (R) =2M - (1 + |logg, [M / B]|)

Sort Cost (S) =2N - (1 + [logg, [N/ B]])

Merge Cost: M + N

The worst case for the merging phase is
when the join attribute of all the tuples in
both relations contain the same value

Sort-merge degenerates to simple nested-loops

Merge Cost: M+ m - N (very unlikely!)

Total Cost: Sort + Merge

(= 2M - # of passes)

(= 2N - # of passes)

R(id, ...) S(id, ...)
N pages
M pages n tuples
m tuples

32

SORT-MERGE JOIN

Example database:
M = 1000, m = 100,000
N =500, n = 40,000

With 100 buffer pages, both R and S can be sorted in two passes:

Sort cost (R)=2-1000 -2 =4000 I/0s
Sortcost(S)=2-500-2=20001/0s

Merge cost = 1000 + 500 = 1500 1/0s

Total cost = 4000 + 2000 + 1500 = 7500 1/0s
At 0.1ms per I/0, total time = 0.75 seconds

33

SORT-MERGE JOIN REFINEMENT

Combine the last pass of merge-sort with the merge phase of join

Possible when the sum of # of runs in R and S in the penultimate (second-to-last)
merge pass of sorting isat most B - 1

Example for 2-pass sort-merge join
Read R and write out sorted runs (pass 0)
Read S and write out sorted runs (pass 0)

Merge R-runs and S-runs, while finding R x S matches
Total cost=2M + 2N + (M + N) = 2000 + 1000 + 1500 = 4500 1/0Os

Eliminates one full read and write of Rand S

34

WHEN IS SORT-MERGE JOIN USEFUL?

One or both tables are already sorted on the join key
Output must be sorted on join key (e.g., ORDER BY clause)
Typically used for equi-joins only

Achieves highly sequential access

Weapon of choice for very large datasets

35

BASIC IN-MEMORY HASH JOIN

Requires equality predicate

Phase #1: Build

Scan the outer relation and build a hash table using a hash function h on join attributes
Key: the attribute(s) that the query is joining the tables on

Value: full tuple or tuple identifier (used in column stores)

Phase #2: Probe

Scan the inner relation and use h on each tuple to jump to a location in the hash table

Find matching tuples there

36

BASIC IN-MEMORY HASH JOIN

build hash table HT,; for R
foreach tuple s € S
emit if h(s) e HT;

R(id, ...)

M pages

) mp

Hash Table
HTg

S(id, ...)

N pages

37

HASH JOIN

What if both relations cannot fit in memory?

ldea: Decompose into smaller “partial joins”

If tuple r € R and tuple s € S satisfy the equi-join condition,
then they have the same value for the join attributes

If that value is hashed to some value i, tuple r has to be in
partition R; and tuple s in partition S;

Thus, R-tuples in R; need only to be compared with S-tuples in S;

38

GRACE HASH JOIN

Phase #1: Partition
Partition tuples from R and S on join attribute using a hash function h
Store partitions of R and S on scratch disk

All tuples for a given join key in same partition

Partitions of R Partitions of S
R(id, ...) = —~ < -

S(id, ...)

M pages @ »

N =

«@ N pages

MaX

40

GRACE HASH JOIN

Phase #2: Build & Probe build hash table HTg , for R,

Join each pair of matching foreach tuple s € S,:
partitions between R and S emit if h(s) e HTg,

R(id, ...)

M pages @ » ; «@ N pages

MaX

GRACE HASH JOIN

If partitions do not fit in memory, use recursive partitioning with
hash function h, (# h) to split the partitions into chunks that will fit

In common cases, we have enough buffers to fit each pair of partitions

Partition Phase

Read + write both tables=2 (M + N) 1/0s R(id, ...) S(id, ...)
Build & Probe Phase N pages
M pages n tuples
Read both tables =M + N |/Os m tuples

Total cost: 3 (M + N)

41

GRACE HASH JOIN

Example database:
M = 1000, m = 100,000
N =500, n = 40,000

Cost Analysis:
3:-(M+ N)=3-(1000 + 500) = 4500 I/0s
At 0.1ms per I/0, total time = 0.45 seconds

42

HASH JOIN VS. SORT-MERGE JOIN

Sorting pros:
Good if input already sorted, or need output sorted

Not sensitive to data skew or bad hash functions

Hashing pros:
For join: # of passes depends on size of smaller relation
E.g. if smaller relation is < B, basic in-memory hashing is great

Good if input already hashed, or need output hashed

43

44

JOIN ALGORITHMS: SUMMARY

JOIN ALGORITHM /0 COST TOTAL TIME
Simple Nested Loops Join M+ (m - N) 1.4 hours
Page Nested Loops Join M+ (M- N) 50 seconds
(using 2 input and 1 output buffer)

Block Nested Loops Join M+ ([M/(B-2)]-N) varies

(using B memory buffers)

Index Nested Loops Join M + (m - access cost) varies
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3 (M + N) 0.45 seconds
Nested Loops or Hash Join M+ N 0.15 seconds

(one relation fits in memory)

SUMMARY

Nested Loops Index Nested Loops

Works for arbitrary join condition When you already have an index on one side

Make sure to utilize memory in blocks For equi-joins mostly

Use the smaller table as the outer table For inequality joins needs a (clustered) B+-tree index
Sort/Hash

For equi-joins only, no index required
Hashing better if one relation is much smaller than other

Sorting better on non-uniform data & when results need to be sorted

No clear winners - may want to implement them all

Be sure you know the cost model for each. You will need it for query optimization!

45

	Slide 1
	Slide 4: Join Operator
	Slide 5: Joins: Overview
	Slide 6: I/O Cost Analysis
	Slide 7: Simple Nested Loops Join
	Slide 8: Simple Nested Loops Join
	Slide 9: Simple Nested Loops Join
	Slide 10: Page Nested Loops Join
	Slide 11: Page Nested Loops Join
	Slide 12: Block Nested Loops Join
	Slide 13: Block Nested Loops Join
	Slide 14: Index Nested Loops Join
	Slide 15: Index Nested Loops Join
	Slide 16: Index Nested Loops Join
	Slide 17: Recap: Nested Loops Joins
	Slide 18: Sort-Merge Join
	Slide 19: Sort-Merge Join
	Slide 20: Sort-Merge Join
	Slide 21: Sort-Merge Join
	Slide 22: Sort-Merge Join
	Slide 23: Sort-Merge Join
	Slide 24: Sort-Merge Join
	Slide 25: Sort-Merge Join
	Slide 26: Sort-Merge Join
	Slide 27: Sort-Merge Join
	Slide 28: Sort-Merge Join
	Slide 29: Sort-Merge Join
	Slide 30: Sort-Merge Join
	Slide 31: Sort-Merge Join
	Slide 32: Sort-Merge Join
	Slide 33: Sort-Merge Join
	Slide 34: Sort-Merge Join Refinement
	Slide 35: When is Sort-Merge Join Useful?
	Slide 36: Basic In-Memory Hash Join
	Slide 37: Basic In-Memory Hash Join
	Slide 38: Hash Join
	Slide 39: Grace Hash Join
	Slide 40: Grace Hash Join
	Slide 41: Grace Hash Join
	Slide 42: Grace Hash Join
	Slide 43: Hash Join vs. Sort-Merge Join
	Slide 44: Join Algorithms: Summary
	Slide 45: Summary

