
Advanced Database Systems
Spring 2026

Lecture #12:

Joins

R&G: Chapter 14

If you require this document in an alternative format, such as large print or a coloured background, please contact milos.nikolic@ed.ac.uk

JOIN OPERATOR

For a tuple r ∈ R and a tuple s ∈ S that

match on join attributes, concatenate

r and s together into a new tuple

Subsequent operators in the query plan

never need to go back to the base tables

to get more data

4

SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

π

⋈
σ

R S

R.id,S.city

R.id = S.id

value>100

JOINS: OVERVIEW

Joins are among the most expensive operations

of joins often used as a measure of query complexity

Join of 10s of tables common in enterprise apps

Naïve implementation: R ⋈c S ≡ σc(R x S)

Enumerate the cross product, then filter using the join condition

Inefficient because the cross product is large

Three classes of join algorithms:

Nested loops

Sort-merge

Hash

5

No particular algorithm

works well in all scenarios

I/O COST ANALYSIS

Assume:

Table R has M pages and m tuples in total

Table S has N pages and n tuples in total

Cost Metric: # of I/Os to compute join

Ignore output costs (same for all join algorithms)

Ignore CPU costs

6

SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

SIMPLE NESTED LOOPS JOIN

Why is this algorithm bad?

For every tuple in R, it scans S once

Terrible if S does not fit in memory

Cost: M + (m · N)

7

foreach tuple r ∈ R:
foreach tuple s ∈ S:
emit if r and s match

Outer table

Inner table

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

SIMPLE NESTED LOOPS JOIN

Example database:

M = 1000, m = 100,000

N = 500, n = 40,000

Cost analysis:

M + (m · N) = 1000 + (100,000 · 500) = 50,001,000 I/Os

At 0.1ms per I/O, total time ≈ 1.4 hours

What if smaller table (S) is used as the outer table?

N + (n · M) = 500 + (40,000 · 1000) = 40,000,500 I/Os

At 0.1ms per I/O, total time ≈ 1.1 hours

8

SIMPLE NESTED LOOPS JOIN

SNLJ (but with page fetches written out explicitly)

Can we do better?

We scan S for every tuple in R,

… but we had to load an entire page of R into memory to get that tuple!

Instead of finding the tuples in S that match a tuple in R,

… do the check for all tuples in a page in R at once

9

foreach page PR ∈ R:
foreach tuple r ∈ PR:
foreach page PS ∈ S:
foreach tuple s ∈ PS:
emit if r and s match

flip loops

PAGE NESTED LOOPS JOIN

This algorithm makes fewer disk accesses

For every page in R, it scans S once

Cost: M + (M · N)

10

foreach page pR ∈ R:
foreach page pS ∈ S:

foreach tuple r ∈ pR:
foreach tuple s ∈ pS:
emit if r and s match

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

PAGE NESTED LOOPS JOIN

Example database:

M = 1000, m = 100,000

N = 500, n = 40,000

Which one should be the outer table?

The smaller table in terms of # of pages

Cost analysis:

N + (M · N) = 500 + (1000 · 500) = 500,500 I/Os

At 0.1ms per I/O, total time ≈ 50 seconds

How many memory buffers are needed?

Just 3: one for each input, one for output

11

BLOCK NESTED LOOPS JOIN

What if we have B buffers available?

B-2 buffers for scanning the outer table

1 buffer for scanning the inner table

1 buffer for storing the output

12

foreach B-2 block bR ∈ R:
foreach block bS ∈ S:

foreach tuple r ∈ bR:
foreach tuple s ∈ bS:
emit if r and s match

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

BLOCK NESTED LOOPS JOIN

Cost: M + (⌈M / (B-2)⌉· N)

If the outer relation (R) fits in memory (M ≤ B - 2)

Cost: M + N = 1000 + 500 = 1500 I/Os (optimal cost)

At 0.1ms per I/O, total time ≈ 0.15 seconds

13

foreach B-2 block bR ∈ R:
foreach block bS ∈ S:

foreach tuple r ∈ bR:
foreach tuple s ∈ bS:
emit if r and s match

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

INDEX NESTED LOOPS JOIN

Why do simple nested loops joins suck?

For each tuple in the outer table, we have to do a sequential scan

to check for a match in the inner table

Can we accelerate the join using an index?

Use an index to find inner tuple matches

We could use an existing index or even build one on the fly

The index must match the join condition

14

INDEX NESTED LOOPS JOIN

Cost: M + m · (cost to find all matching S tuples)

Index access cost per R tuple:

B+ tree: 2-4 I/Os to reach a leaf + fetch matching S tuples

Clustered: M + m · (Search + # matching pages)

Unclustered: M + m · (Search + up to # matching tuples)

Hash index: 1-2 I/Os to reach the target bucket

15

foreach tuple r ∈ R:
foreach tuple s ∈ Index(ri = sj)
emit if r and s match

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

Index(S.id)

INDEX NESTED LOOPS JOIN

Cost: M + m · (cost to find all matching S tuples)

The cost depends on the size of the join result

Using an index pays off if the join is selective

16

foreach tuple r ∈ R:
foreach tuple s ∈ Index(ri = sj)
emit if r and s match

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

Index(S.id)

RECAP: NESTED LOOPS JOINS

Pick the smaller table as the outer table

Buffer as much of the outer table in memory as possible

Loop over the inner table

Allows arbitrary join conditions

Or use an index over the inner table

Only if matches the join condition

17

SORT-MERGE JOIN

Requires equality predicate

Equi-joins & natural joins

Phase #1: Sort

Sort both tables on the join key(s)

E.g. by using the external merge sort

Input might already be sorted… why?

Phase #2: Merge

Scan the two sorted tables in parallel and emit matching tuples

18

SORT-MERGE JOIN

19

sort R,S on join key A
r ⃪ position of first tuple in Rsorted
s ⃪ position of first tuple in Ssorted
while r ≠ EOF and s ≠ EOF:
if r.A > s.A:

advance s

else if r.A < s.A:
advance r

else if r.A = s.A:

emit (r,s)
advance s

assumes no duplicates in R

(the merge phase could be easily

extended to support duplicates)

SORT-MERGE JOIN

20

id value city

100 2222 Edinburgh

500 7777 Edinburgh

400 6666 London

100 9999 London

200 8888 Oxford

S(id, value, city)
id name

600 Daniel

200 Michael

100 Alice

300 Bob

500 Carrol

700 Lucia

400 John

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Sort!

Sort!

SORT-MERGE JOIN

21

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Sort!

Sort!

SORT-MERGE JOIN

22

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

SORT-MERGE JOIN

23

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

Output Buffer

SORT-MERGE JOIN

24

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

SORT-MERGE JOIN

25

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

SORT-MERGE JOIN

26

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

200 Michael 200 8888 Oxford

SORT-MERGE JOIN

27

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

200 Michael 200 8888 Oxford

SORT-MERGE JOIN

28

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

200 Michael 200 8888 Oxford

SORT-MERGE JOIN

29

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

200 Michael 200 8888 Oxford

400 John 400 6666 London

SORT-MERGE JOIN

30

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

200 Michael 200 8888 Oxford

400 John 400 6666 London

SORT-MERGE JOIN

31

id value city

100 2222 Edinburgh

100 9999 London

200 8888 Oxford

400 6666 London

500 7777 Edinburgh

S(id, value, city)
id name

100 Alice

200 Michael

300 Bob

400 John

500 Carrol

600 Daniel

700 Lucia

R(id, name) SELECT R.id, S.city
FROM R, S
WHERE R.id = S.id
AND S.value > 100

Output Buffer

R.id R.name S.id S.value S.city

100 Alice 100 2222 Edinburgh

100 Alice 100 9999 London

200 Michael 200 8888 Oxford

400 John 400 6666 London

500 Carrol 500 7777 Edinburgh

SORT-MERGE JOIN

Sort Cost (R) = 2M · (1 + ⌈logB-1 ⌈M / B⌉⌉) (= 2M · # of passes)

Sort Cost (S) = 2N · (1 + ⌈logB-1 ⌈N / B⌉⌉) (= 2N · # of passes)

Merge Cost: M + N

The worst case for the merging phase is

when the join attribute of all the tuples in

both relations contain the same value

Sort-merge degenerates to simple nested-loops

Merge Cost: M + m · N (very unlikely!)

Total Cost: Sort + Merge

32

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

SORT-MERGE JOIN

Example database:

M = 1000, m = 100,000

N = 500, n = 40,000

With 100 buffer pages, both R and S can be sorted in two passes:

Sort cost (R) = 2 · 1000 · 2 = 4000 I/Os

Sort cost (S) = 2 · 500 · 2 = 2000 I/Os

Merge cost = 1000 + 500 = 1500 I/Os

Total cost = 4000 + 2000 + 1500 = 7500 I/Os

At 0.1ms per I/O, total time ≈ 0.75 seconds

33

SORT-MERGE JOIN REFINEMENT

Combine the last pass of merge-sort with the merge phase of join

Possible when the sum of # of runs in R and S in the penultimate (second-to-last)

merge pass of sorting is at most B - 1

Example for 2-pass sort-merge join

Read R and write out sorted runs (pass 0)

Read S and write out sorted runs (pass 0)

Merge R-runs and S-runs, while finding R ⋈ S matches

Total cost = 2M + 2N + (M + N) = 2000 + 1000 + 1500 = 4500 I/Os

Eliminates one full read and write of R and S

34

WHEN IS SORT-MERGE JOIN USEFUL?

One or both tables are already sorted on the join key

Output must be sorted on join key (e.g., ORDER BY clause)

Typically used for equi-joins only

Achieves highly sequential access

Weapon of choice for very large datasets

35

BASIC IN-MEMORY HASH JOIN

Requires equality predicate

Phase #1: Build

Scan the outer relation and build a hash table using a hash function h on join attributes

Key: the attribute(s) that the query is joining the tables on

Value: full tuple or tuple identifier (used in column stores)

Phase #2: Probe

Scan the inner relation and use h on each tuple to jump to a location in the hash table

Find matching tuples there

36

BASIC IN-MEMORY HASH JOIN

37

build hash table HTR for R
foreach tuple s ∈ S

emit if h(s) ∈ HTR

N pagesM pages

R(id, …)
S(id, …)

Hash Table

HTR

…
h h

HASH JOIN

What if both relations cannot fit in memory?

Idea: Decompose into smaller “partial joins”

If tuple r ∈ R and tuple s ∈ S satisfy the equi-join condition,

then they have the same value for the join attributes

If that value is hashed to some value i, tuple r has to be in

partition Ri and tuple s in partition Si

Thus, R-tuples in Ri need only to be compared with S-tuples in Si

38

GRACE HASH JOIN

Phase #1: Partition

Partition tuples from R and S on join attribute using a hash function h

Store partitions of R and S on scratch disk

All tuples for a given join key in same partition

39

M pages

R(id, …)

h

Partitions of R

…
h

Partitions of S

…

0
1

2

max

N pages

S(id, …)

GRACE HASH JOIN

Phase #2: Build & Probe

Join each pair of matching

partitions between R and S

40

M pages

R(id, …)

h

Partitions of R

…
h

Partitions of S

…

0
1

2

max

N pages

S(id, …)

build hash table HTR,0 for R0
foreach tuple s ∈ S0:

emit if h(s) ∈ HTR,0

GRACE HASH JOIN

If partitions do not fit in memory, use recursive partitioning with

hash function h2 (≠ h) to split the partitions into chunks that will fit

In common cases, we have enough buffers to fit each pair of partitions

Partition Phase

Read + write both tables = 2 (M + N) I/Os

Build & Probe Phase

Read both tables = M + N I/Os

Total cost: 3 (M + N)

41

N pages
n tuplesM pages

m tuples

R(id, …) S(id, …)

GRACE HASH JOIN

Example database:

M = 1000, m = 100,000

N = 500, n = 40,000

Cost Analysis:

3 · (M + N) = 3 · (1000 + 500) = 4500 I/Os

At 0.1ms per I/O, total time ≈ 0.45 seconds

42

HASH JOIN VS. SORT-MERGE JOIN

Sorting pros:

Good if input already sorted, or need output sorted

Not sensitive to data skew or bad hash functions

Hashing pros:

For join: # of passes depends on size of smaller relation

E.g. if smaller relation is < B, basic in-memory hashing is great

Good if input already hashed, or need output hashed

43

JOIN ALGORITHMS: SUMMARY

44

JOIN ALGORITHM I/O COST TOTAL TIME

Simple Nested Loops Join M + (m · N) 1.4 hours

Page Nested Loops Join
(using 2 input and 1 output buffer)

M + (M · N) 50 seconds

Block Nested Loops Join
(using B memory buffers)

M + (⌈M / (B-2) ⌉ · N) varies

Index Nested Loops Join M + (m · access cost) varies

Sort-Merge Join M + N + (sort cost) 0.75 seconds

Hash Join 3 (M + N) 0.45 seconds

Nested Loops or Hash Join
(one relation fits in memory)

M + N 0.15 seconds

SUMMARY

No clear winners – may want to implement them all

Be sure you know the cost model for each. You will need it for query optimization!

45

Nested Loops

Works for arbitrary join condition

Make sure to utilize memory in blocks

Use the smaller table as the outer table

Index Nested Loops

When you already have an index on one side

For equi-joins mostly

For inequality joins needs a (clustered) B+-tree index

Sort/Hash

For equi-joins only, no index required

Hashing better if one relation is much smaller than other

Sorting better on non-uniform data & when results need to be sorted

	Slide 1
	Slide 4: Join Operator
	Slide 5: Joins: Overview
	Slide 6: I/O Cost Analysis
	Slide 7: Simple Nested Loops Join
	Slide 8: Simple Nested Loops Join
	Slide 9: Simple Nested Loops Join
	Slide 10: Page Nested Loops Join
	Slide 11: Page Nested Loops Join
	Slide 12: Block Nested Loops Join
	Slide 13: Block Nested Loops Join
	Slide 14: Index Nested Loops Join
	Slide 15: Index Nested Loops Join
	Slide 16: Index Nested Loops Join
	Slide 17: Recap: Nested Loops Joins
	Slide 18: Sort-Merge Join
	Slide 19: Sort-Merge Join
	Slide 20: Sort-Merge Join
	Slide 21: Sort-Merge Join
	Slide 22: Sort-Merge Join
	Slide 23: Sort-Merge Join
	Slide 24: Sort-Merge Join
	Slide 25: Sort-Merge Join
	Slide 26: Sort-Merge Join
	Slide 27: Sort-Merge Join
	Slide 28: Sort-Merge Join
	Slide 29: Sort-Merge Join
	Slide 30: Sort-Merge Join
	Slide 31: Sort-Merge Join
	Slide 32: Sort-Merge Join
	Slide 33: Sort-Merge Join
	Slide 34: Sort-Merge Join Refinement
	Slide 35: When is Sort-Merge Join Useful?
	Slide 36: Basic In-Memory Hash Join
	Slide 37: Basic In-Memory Hash Join
	Slide 38: Hash Join
	Slide 39: Grace Hash Join
	Slide 40: Grace Hash Join
	Slide 41: Grace Hash Join
	Slide 42: Grace Hash Join
	Slide 43: Hash Join vs. Sort-Merge Join
	Slide 44: Join Algorithms: Summary
	Slide 45: Summary

