
University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2025)

Guide to Examinable Materials

This guide organised by topics is to give you an idea about the depth of understanding of the
materials required for the final exam. The examinable material is classified as follows:

• Definition: This is an important definition of a concept or a problem – you should certainly
know it.

• Statement: You need to know the statement of the result. We may ask you what the result
is and/or you may need to know it to answer one of the questions. In the case of a Lemma
or Theorem, you won’t be asked for the proof. For an Algorithm you should know which
problem it solves and its performance (time and space complexity etc.). You won’t be asked
how it works or to prove its run-time or correctness.

• Method: You need to know everything from Statement and also what the method is. That
is we may ask you how it works but we won’t ask you to prove it.

• Proof: You need to know everything about this. We might ask you what it is, how it works
etc. However, the AFDS final exam is not a memory test and, instead of memorising the
proofs, you should understand why the statements are proven in a certain way: we may ask
you whether a different proof technique works or not.

During the exam, your aim is to convince us that you know why something is true. Be as
rigorous and clear as you can. Remember we will be marking as fairly as we can — if we believe
you understand why something is true you will get good marks.

Tips:

• Calculators may be used in this examination.

• Question 1 is relatively easier than Question 2 and 3. You should answer Q1 first, but leave
enough time for Q2 or Q3.

• If both Q2 and Q3 are answered, then only Q2 will be marked. Given the difficulty of
Q2 and Q3, you should spend time checking both questions carefully, and decide which
question to answer.

• A sample format of the questions in the final exam:

– Describe the algorithm we discussed in class.

– Present the outcome of some algorithm, e.g., given an undirected graph and input
vector, calculate the vertex set that the sweep-set based algorithm outputs.

– Prove or disprove by counterexample some statement like “when doubling the weights
of all the edges in a graph G, the largest eigenvalue of the normalised Laplacian matrix
of the new graph is doubled.”

1 High-Dimensional Spaces

The law of large numbers. Most of our analysis is based on the following three basic
probability inequalities. Let X be a non-negative random variable. Then the Markov inequality
states that, for any c > 0, we have

Pr [X ≥ c] ≤ E [X]

c
. [Statement]

The Chebyshev’s Inequality states that, for any c > 0, we have

Pr [|X −E [X] | > c] ≤ Var [X]

c2
. [Statement]

Based on the inequality above, we can prove the so-called Law of Large Numbers, i.e., for any n
independent samples of a random variable X denoted by x1, · · ·xn, we have

Pr

[∣∣∣∣x1 + · · ·+ xn
n

−E [X]

∣∣∣∣ ≥ ε] ≤ Var [X]

nε2
. [Statement](1)

Notice that n is in the denominator of the RHS in (1), which implies that the more samples we
take, the smaller the error we have; also notice that ε is in the denominator of the RHS in (1),
which implies that the large the value of ε, the smaller the error is.

Application of the law of large numbers. To see the application of the law of large
numbers, we assume that y = (y1, · · · , yd) and z = (z1, · · · , zd) are two random points drawn
from d−dimensional random Gaussian with unit variance in each direction. Then, it holds that

E
[
y2i
]

= E
[
|yi −E [yi]|2

]
= Var[yi] = 1 [Proof]

and E
[
z2i
]

= 1 for the same reason. By linearity of expectation, we have E
[
‖y‖2

]
= d and

E
[
‖z‖2

]
= d. By the Law of Large Numbers we know that ‖y‖2 ≈ d and ‖z‖2 ≈ d with high

probability. On the other hand, we have that

E
[

(yi − zi)2
]

= E
[
y2i − 2 · yi · zi + z2i

]
= E

[
y2i
]
− 2 ·E [yi] ·E [zi] + E

[
z2i
]

= 2.

This gives us that
‖y − z‖2 ≈ 2d ≈ ‖y‖2 + ‖z‖2 ,

i.e., y and z must be approximately orthogonal. [Method]

Dimension reduction. The Johnson-Lindenstrauss lemma states that any n points in high-
dimensional Euclidean space can be mapped onto k dimensions where k = O

(
log n/ε2

)
without

distorting the Euclidean distance between any pair of points more than a factor of 1± ε. Formally,
for any X ⊆ Rd of n points and ε ∈ (0, 1/5), there is a random matrix Φ ∈ Rk×d, such that it
holds with constant probability that

∀x, y ∈ X : (1− ε)‖x− y‖2 ≤ ‖Φx− Φy‖2 ≤ (1 + ε)‖x− y‖2,

where k = O
(
log n/ε2

)
. [Proof]

1

2 Best-Fit Subspaces and Singular Value Decomposition

Singular values and singular vectors. Given matrix A ∈ Rn×d, the first singular vector v1
of A is defined as

v1 , arg max
‖v‖=1

‖Av‖,

and the value σ1(A) , ‖Av1‖ is called the first singular value of A. The second singular vector
v2 is defined by

v2 , arg max
v⊥v1,‖v‖=1

‖Av‖,

and σ2(A) , ‖Av2‖ is called the second singular value of A. The other singular values and
singular vectors can be defined inductively in the same way. [Definition]

To find the best-fit subspace, we present a simple greedy algorithm. Namely, the greedy
algorithm finds v1 that maximises ‖Av‖ and then the best-fit 2-dimensional subspace containing
v1, etc. We also prove the correctness of this greedy strategy, i.e., for any A ∈ Rn×d with
singular vectors v1, . . . , vr, and 1 ≤ k ≤ r, then the subspace spanned by v1, . . . , vk is the best-fit
k-dimensional subspace for A. [Proof]

Singular value decomposition. We can think of A ∈ Rn×d as a linear transformation taking
a vector v1 in its row space to a vector u1 = Av1 in its column space. Many applications require
to find an orthogonal basis for the row space and transform it into an orthogonal basis for the
column space: Avi = σiui. The heart of the problem is to find v1, . . . , vr for the row space of A
for which

A[v1, v2, . . . , vr] = [σ1u1, σ2u2, . . . , σrur]

= [u1, u2, . . . , ur]

σ1 . . .
σr

 . (2)

Then, it is easy to see that the left and right-singular vectors ui = 1
σi
Avi, vi, and their associated

singular values σi satisfy (2). With these vectors uis, vis, and the singular values σis, we can
write A in matrix notation as

A = UDV ᵀ, [Statement]

where ui is the i-th column of U , vᵀi is the i-th row of V ᵀ, and D is the diagonal matrix with σi
as the i-th entry on its diagonal. This factorisation of A in the form of UDV ᵀ is called Singular
value decomposition. It is easy to check that

A =

r∑
i=1

σiuiv
ᵀ
i . [Statement]

The power method for computing the largest eigenvalue. The main ideas of the power
method for computing eigenvalues and eigenvectors are summarised as follows: instead of
computing Bk, we select a random vector x and compute Bkx. For time complexity, notice that
computing Bx for any vector x takes O(n+ nnz(B)) time if the non-zero entries of matrix B are
stored by an adjacency list, where nnz(B) is the number of non-zero entries of matrix B. Hence,
the total runtime for computing Bkx is O(k · (n+ nnz(B))). The formal description of the power
method for computing λ1 is shown in Algorithm 1. [Method]We also prove that, for any parameter ε > 0,
with probability 3/16 over the initial choices of x0, Algorithm 1 outputs a vector xk such that

xᵀkBxk
xᵀkxk

≥ (1− ε) · λ1 ·
1

1 + 4n(1− ε)2k
.

2

In particular, when setting k = O(log n/ε), we have that

xᵀkBxk
xᵀkxk

≥ (1−O(ε))λ1. [Method]

Algorithm 1 Power method for approximating λ1
1: Input: a PSD symmetric matrix B ∈ Rn×n, and positive integer k
2: Choose x0 uniformly at random from {−1, 1}n.
3: for i = 1 to k do
4: xi = Bxi−1
5: end for
6: return xk

Power method to compute the second largest eigenvalue. Similar with Algorithm 1, we
can compute the second largest eigenvalue with the power method as well, by ensuring that the
initial vector used for the “power iterations” is perpendicular to v1, see Algorithm 2 for formal
description. For the algorithm’s performance, one can prove that with constant probability over
the choices of x, Algorithm 2 outputs a vector y ⊥ v1 such that

yᵀMy

yᵀy
≥ λ2 · (1− ε) ·

1

1 + 4n(1− ε)2k
,

where λ2 is the second largest eigenvalue of B, counting multiplicities. [Method]

Algorithm 2 Power method for approximating λ2
1: Input: a PSD symmetric matrix B ∈ Rn×n, and positive integer k
2: Choose x uniformly at random from {−1, 1}n.
3: Let x0 = x− 〈v1, x〉 · v1
4: for i = 1 to k do
5: xi = Bxi−1
6: end for
7: return xk

Comparison between SVD and JL. We presented a detailed comparison between SVD and
JL. You should know which techniques can be applied for specific settings. [Method]

3 Hashing

Most data streaming algorithms rely on constructions of a class of functions, called hash functions,
that have found a surprising large number of applications. The basic idea behind using hash
functions is to make input date have certain independence through some easy-to-compute function.
Formally, we want to construct a family of functions H = {h | h : U →M} such that (1) every
function h ∈ H is easy to represent; (2) for any x ∈ U , h(x) is easy to evaluate; (3) for any set S
of small cardinality, hashed values of items in S have small collisions.

We call a set of functions H mapping a universe U to the set {0, 1, . . . , n − 1} a universal
family of hash functions, if for any pair of elements u 6= v, we have

Ph∈H
[
h(u) = h(v)

]
≤ 1/n. [Definition]

3

To demonstrate the power of universal hash functions, we prove the following result: let H be a
universal family of hash functions mapping a universe U to the set {0, 1, . . . , n− 1}. Let h ∈ H
be chosen uniformly at random from H; let S ⊆ U be a subset of size at most n, and u 6∈ S.
Then, the expected number of items in S that collide with u is at most 1. [Proof]We also present an
efficient method for constructing universal hash functions. [Proof]

We call a family of functions H = {h | h : U 7→ [n]} pairwise independent if, for any h
chosen uniformly at random from H, it holds that (1) h(x) is uniformly distributed in [n] for
any x ∈ U , and (2) for any x1 6= x2 ∈ U , h(x1) and h(x2) are independent. [Definition]Furthermore, the
set H = {h : U → [n]} is call a set of k-wise independent hash functions if for any distinct
x1, . . . , xk ∈ U , and any y1, . . . , yk ∈ [n],

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(xk) = yk

]
=

1

nk
[Definition]

The family of k-wise independent hash functions can be constructed as follows: let p be a prime,
and k ≥ 2 be an integer. Assume that a seed s = (a0, . . . , ak−1) is chosen uniformly at random
from Zkp. Then, the set of functions H =

{
hs|s ∈ Zkp

}
, where

hs(x) =
k−1∑
i=0

aix
i mod p

is k-wise independent. [Method]For the case of k = 2, we show why this set of functions is pairwise
independent. [Proof]

4 Data Streaming Algorithms

A data stream is a sequence of data S = s1, s2, . . . , sm, . . ., where each item si belongs to the
universe U , where |U | = n. A streaming algorithm A takes S as input and computes some
function f of stream S. Moreover, algorithm A has access the input in a “streaming fashion”, i.e.,
A cannot read the input in another order and for most cases A can only read the data once. [Definition]

Depending on how items in U are expressed in S, there are two typical models: (1) Cash
Register Model: Each item si in stream S is an item of U . Different items come in an arbitrary
order. (2) Turnstile Model: In this model we have a multi-set D, and D = ∅ initially. Every
coming item is associated with one of two special symbols in order to indicate the dynamic
changes of the data set. For instance, every item in S can be a pair (x, U), and x is added into
D if U is “+”, and x is deleted from D if U is “−”. [Definition]

To cope with the practical applications occurring in processing massive datasets, we need
to design sublinear -space algorithms that provides a good approximation of certain quantities
satisfying the following constraints:

• Space: Space of algorithm A is O(poly log(n)).
• Quick update time: For every coming item in the stream, quick update time is desired.
• Approximate: For approximation parameter ε > 0 and confidence parameter δ > 0, the
output of A achieves a (1± ε)-approximation of the exact value f(S) with probability at
least 1− δ. That is, the output f?(S) satisfies

P[f?(S) ∈ [(1− ε)f(S), (1 + ε)f(S)]] ≥ 1− δ. [Statement]

Counting distinct items. Our first problem is to approximate the number of distinct items
in a stream. We first define the Fp-norm. Let S be a multi-set, where every item i of S is in [N].
Let mi be the number of occurrences of item i in set S. Then the Fp-norm of set S is defined by

Fp ,
∑
i∈[N]

|mi|p,

4

where 0p is set to be 0. [Definition]We also introduce the function

ρ(x) , max
i
{i : x mod 2i = 0},

which is be the number of zeros that Binary(x) ends with. Based on the use of ρ(·), the AMS
algorithm for approximating F0 is described in Algorithm 3. We prove that with constant
probability the AMS algorithm’s output is in [F0/3, 3 · F0]. [Proof]

Algorithm 3 The ABS algorithm for approximating F0

1: Choose a random function h : [n]→ [n] from a family of pairwise independent hash functions;
2: z ← 0;
3: while an item x arrives do
4: if ρ(h(x)) > z then
5: z ← ρ(h(x));
6: end if
7: end while
8: Return 2z+1/2

To improve the approximation guarantees of the AMS algorithm, we present the BJKST
algorithm for approximating F0. The BJKST algorithm uses a set to keep the sampled items. By
running Θ(log(1/δ)) independent copies in parallel and returning the medium of these outputs,
the BJKST algorithm (ε, δ)-approximates the F0-norm of the multiset S. See Algorithm 4 for
formal description. [Method]

Algorithm 4 The BJKST algorithm for approximating F0

1: Choose a pairwise independent hash function h : [n]→ [n]
2: z ← 0 . z is the index of the current level
3: B ← ∅ . Set B keeps sampled items
4: while an item x arrives do
5: if ρ(h(x)) ≥ z then
6: B ← B ∪ {(x, ρ(h(x)))}
7: while |B| ≥ 100/ε2 do . Set B becomes full
8: z ← z + 1 . Increase the level
9: shrink B by removing all (x, ρ(h(x))) with ρ(h(x)) < z

10: end while
11: end if
12: end while
13: Return |B| · 2z

Algorithm for approximating F2. We show that how 4-wise independent hash functions
can be used to approximate F2, and the algorithm is described in Algorithm 5. To analyse the
algorithm’s space complexity we prove that E[Z] = F2 and V[Z] ≤ 2F 2

2 . These results together
show that O((1/ε2) log n) bits are sufficient to obtain a (1 + ε)-approximation of F2. [Proof]

The Count-Min sketch. The CM sketch is a table C of d = dlog(1/δ)e rows and w = de/εe
columns, and every row j is associated with a universal hash function hj : [N]→ [w]. To maintain
the CM sketch, the algorithm sets C[j, hj(x)] = C[j, hj(x)] + 1 for any 1 ≤ j ≤ d if Insert(x)
arrives; the algorithm sets C[j, hj(x)] = C[j, hj(x)] − 1 for any 1 ≤ j ≤ d if Delete(x) arrives.
When Query(x) arrives, the algorithm returns m′x = min1≤i≤dC[j, hj(x)]. [Method]We prove that the
estimate m′x satisfies m′x ≥ mx, and with probability at least 1− δ it holds that m′x ≤ mx + ε ·F1,
where F1 is the first moment of the multiset S. [Proof]

5

Algorithm 5 The BJKST Algorithm
1: Choose a 4-wise independent hash function h : [n]→ [−1, 1]
2: y ← 0
3: while an item (x,±) arrives do
4: if x is inserted then y = y + h(x)
5: else
6: y = y − h(x) . The case where x is deleted
7: end if
8: end while
9: Return Z = y2

Chernoff bound. Many of our analysis is based on the use of Chernoff bound stated as follows:
Let X1, . . . , Xn be independent random variables with Pr [Xi = 1] = Pr [Xi = −1] = 1/2. Let
X :=

∑n
i=1Xi. Then for any λ > 0, Pr [X ≥ λ] ≤ e−λ

2/(2n). [Statement]

5 Graphs versus Matrices

Let G(V,E,w) be a graph with weight function w : E → R≥0. Let D ∈ Rn×n be the diagonal
matrix where Du,u = du for any vertex u, where du =

∑
u∼v w(u, v). The adjacency matrix

of graph G is the matrix A defined by Au,v = w(u, v) if u ∼ v, and Au,v = 0 otherwise. The
Laplacian matrix of G is defined by L = D − A, where A is the adjacency matrix of G. The
normalised Laplacian matrix of G is defined by

L = D−1/2LD−1/2 = I −D−1/2AD−1/2.

For matrix L, we denote its n eigenvalues with λ1 ≤ . . . ≤ λn with corresponding orthonormal
eigenvectors f1, . . . , fn. The set of n eigenvalues {λi}ni=1 together with their multiplicities is called
the spectrum of G. [Definition]

It is easy to prove that λ1(L) = 0 with the associated eigenvector D1/2 · 1. [Proof]More graph
properties can be characterised with respect to other eigenvalues, see the list below for example.

• It holds that

λ2 = min
f⊥D1

∑
u∼v(fu − fv)2∑

u du · f2u
. [Proof]

• λ2 ≤ n/(n− 1), and λ2 = n/(n− 1) iff G is a complete graph. [Proof]

• If G is not a complete graph, then λ2 ≤ 1 [Proof]

Expander mixing lemma. Let λ = maxi≥2 |1− λi| the spectral expansion of G. Then, the
expander mixing lemma states that, for any X,Y ⊂ V , we have∣∣∣∣|E(X,Y)| − volX · volY

volG

∣∣∣∣ ≤ λ · √volXvolY .

[Proof]Notice that volX ·volY/volG is the expected value of |E(X,Y)| in a random graph of edge density
volG/n2. Hence, the left side of the equation above is the difference between |E(X,Y)| and its
expected value in a random graph. So, a smaller value of λ shows that G is more close to be a
random graph. The expander mixing lemma has several interesting applications in approximating
some graph parameters, whose exact computation is known to be NP-hard:

• The volume of any independent set in G is at most λ · volG. [Proof]

• Let G be a regular graph. Then the chromatic number of G is at least 1/λ. [Proof]

6

Graph conductance and the Cheeger inequality. For any G = (V,E,w) with weight
function w : E → R and S ⊂ V , the conductance of S is defined by

hG(S) =
w(S, V \ S)

min{vol(S), vol(V \ S)}
,

where vol(S) =
∑

u∈S du, and w(S, V \ S) denotes the weight of edges with one endpoint in S
and the other endpoint in V \ S. The Cheeger constant or the conductance of graph G is
defined as

hG = min
S
hG(S).

Direct calculations show that
λ2 ≤ 2 · hG, [Proof]

and the celebrated Cheeger inequality show that hG, which is NP-hard to compute, can be upper
bounded with respect to λ2 as well, i.e.,

hG ≤
√

2 · λ2. [Method]

The core behind the proof of the Cheeger inequality is the following Algorithm 6, whose output
is a set S satisfying hG(S) ≤

√
2 · λ2.

Algorithm 6 Algorithm for finding a sparse cut
1: f = D−1/2f2
2: Sort all the vertices such that f(u1) ≤ . . . ≤ f(un)
3: t = 0
4: S = ∅
5: S? = {u1}
6: while t ≤ n do
7: t = t+ 1
8: S = S ∪ {ut}
9: if hG(S) ≤ hG(S?) then S? = S

10: end if
11: end while
12: return S?

Higher-order Cheeger Inequality. To relate the structure of multi-clusters in a graph
with the other eigenvalues of L, we define the k-way expansion of G. We call subsets of
vertices (i.e. clusters) A1, . . . , Ak a k-way partition of G if Ai ∩Aj = ∅ for different i and j, and⋃k
i=1Ai = V . We further define the k-way expansion constant by

ρ(k) , min
partition A1,...,Ak

max
1≤i≤k

hG(Ai). [Definition]

The higher-order Cheeger inequality relates ρ(k) and λk by the inequality

λk
2
≤ ρ(k) ≤ O(k2)

√
λk. [Statement]

6 Spectral Clustering

Spectral clustering is one of the most popular clustering algorithms used in practice. The general
framework of spectral clustering consists in (1) computing an embedding of the vertices in a
low-dimensional Euclidean space using the eigenvectors of LG, (2) partitioning the points using a

7

geometric clustering algorithm, e.g., k-means, and (3) returning a corresponding partition of the
graph. [Statement]

To reason about the performance of spectral clustering, we first prove that the graph G has
k connected components if and only if the k smallest eigenvalues of G’s normalised Laplacian
matrix λ1 = . . . = λk = 0. [Proof]Secondly, we apply the Davis-Kahan theory, which states in the graph
setting that, as long as not too many edges between different clusters are added, the bottom k
eigenvectors do not change too much. Together with the higher-order Cheeger inequality, we
know that, as long as there is a large gap between λk and λk+1, spectral clustering is able to
approximately recover the k clusters. Our reasoning also shows that why the smallest value of k
for which there is a gap between λk and λk+1 is a right indication for the number of clusters. [Method]

We also study the applications of spectral clustering in image segmentation through the
construction of similarity graphs, and mention the “impossibility theorem for clustering”. [Method]

8

