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Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S C U so
that inserting, deleting, and searching in S are efficient.
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Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S C U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.
= create(): initialise a dictionary with S = ().
= insert(u): add elementw € U to S.
* delete(u): delete u from S (if w is currently in .S).
* lookup(u):isuin S ?

Easy solution. Build an array b of length |U|, where b[u] indicates if u appears in
S.
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Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S C U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.
= create(): initialise a dictionary with S = ().
= insert(u): add elementw € U to S.
* delete(u): delete u from S (if w is currently in .S).
* lookup(u):isuin S ?

Easy solution. Build an array b of length |U|, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.
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Hashing

Hash function. h : U — [n], where [n] := {0,1,...,n — 1}.

Hashing. Create an array a of length n. When processing element u, access
array element a[h(u)].
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Hashing

Hash function. h : U — [n], where [n] := {0,1,...,n — 1}.

Hashing. Create an array a of length n. When processing element u, access
array element a[h(u)].

birthday paradox
Collision. When h(u) = h(v) but n # v.

= collision is expected after ©(y/n) random insertions.
= Separate chaining: ali] stores linked list of elements « with h(u) = 4.

Huge universe U

hash table of size n
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Hashing with chaining
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Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.
= Running time depends on length of chains.
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Challenge. Explicit hash function h that achieves O(1) per operation.
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Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.
= Running time depends on length of chains.
= Average length of chain = m/n.
= Choose n = m = expect O(1) per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves O(1) per operation.

Approach. Use randomisation for the choice of h.

adversary knows the randomised algorithm you are using, but doesn’t know
random choices that the algorithm makes.
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Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0,1,...,n — 1} such that, for any pair of elements u # v,

Phen [h(u) = h(v)] < 1/n.
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Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0,1,...,n — 1} such that, for any pair of elements u # v,

Phen [h(u) = h(v)] < 1/n.

Example. U = {a,b,c,d,e, f},n =2
Phen[h(a) = h(b)] = 1/2

a b c d e f
hi(z) | O T 101
ho(x) 0 0] 0 1 1 1
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Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0,1,...,n — 1} such that, for any pair of elements u # v,

Phen [h(u) = h(v)] < 1/n.

Example. U = {a,b,c,d,e, f},n =2
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A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0,1,...,n — 1} such that, for any pair of elements u # v,
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Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0,1,...,n — 1} such that, for any pair of elements u # v,
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Universal hashing: analysis

LEMMA
Let H be a universal family of hash functions mapping a universe U to the set
{0,1,...,n—1}. Let h € H be chosen uniformly at random from H;let.S C U
be a subset of size at most n, and u ¢ S. Then, the expected number of items
in S that collide with w is at most 1.
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LEMMA

Let H be a universal family of hash functions mapping a universe U to the set
{0,1,...,n—1}. Let h € H be chosen uniformly at random from H;let.S C U
be a subset of size at most n, and u ¢ S. Then, the expected number of items
in S that collide with w is at most 1.

Proof. For any s € .S, define random variable X, = 1 if h(s) = h(u), and 0
otherwise. Let X be a random variable counting the total number of collisions
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Universal hashing: analysis

LEMMA

Let H be a universal family of hash functions mapping a universe U to the set
{0,1,...,n—1}. Let h € H be chosen uniformly at random from H;let.S C U
be a subset of size at most n, and u ¢ S. Then, the expected number of items
in S that collide with w is at most 1.

Proof. For any s € .S, define random variable X, = 1 if h(s) = h(u), and 0
otherwise. Let X be a random variable counting the total number of collisions
with u, 80 X = > ¢ Xs.

E[X]=E ZXS] =Y E[XJ] =) P[X,=1] < Z%
seS seS seSs ses
—18lm <t N\ N\

linearity of expectation J [def. of universal hasing J

Q: How can we design a universal class of hash functions?
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Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.
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Integer encoding. Identify each element u € U with a base-p integer of r digits:
z = (z1,22,...,%r).
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Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u € U with a base-p integer of r digits:

z = (z1,22,...,%r).
Hash functions. Let A = set of all r-digits (a1, a2, ...,ar), where 0 < a; < p.
For each a = (a1, az, ..., a,) with 0 < a; < p, define

ha(z) = (Z ami) mod p.
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Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u € U with a base-p integer of r digits:
z = (z1,22,...,%r).

Hash functions. Let A = set of all r-digits (a1, a2, ...,ar), where 0 < a; < p.
For each a = (a1, az, ..., a,) with 0 < a; < p, define

ha(z) = (Z ami) mod p.

Hash function family. H = {h, : a € A}
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Designing a universal family of hash functions

THEOREM

H = {hq : a € A} is a universal family of hash functions.
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THEOREM
‘ H = {hq : a € A} is a universal family of hash functions.

Proof: Let x = (21, z2,...,z») and y = (y1, ..., yr) be two distinct elements of
U. We need to show that P{hq(z) = ha(y)] < 1/p.
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= Since x # y, there exists an integer j such that x; # y;.

&9 THE UNIVERSITY
@ of EDINBURGH AFDS He Sun



®

Designing a universal family of hash functions

THEOREM
‘ H = {hq : a € A} is a universal family of hash functions.

Proof: Let x = (21, z2,...,z») and y = (y1, ..., yr) be two distinct elements of
U. We need to show that P{hq(z) = ha(y)] < 1/p.

= Since x # y, there exists an integer j such that x; # y;.
* We have ha(z) = ha(y) iff Y, aizi = >.;_, aiys mod p, i.e.,

aj (y; —w;) =Y _ai(zi—y;) modp
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Designing a universal family of hash functions

THEOREM
‘ H = {hq : a € A} is a universal family of hash functions.

Proof: Let x = (21, z2,...,z») and y = (y1, ..., yr) be two distinct elements of
U. We need to show that P[hq(z) = ha(y)] < 1/p.

= Since x # y, there exists an integer j such that x; # y;.

* We have ha(z) = ha(y) iff Y, aizi = >.;_, aiys mod p, i.e.,

aj (y; —w;) =Y _ai(zi—y;) modp
N——-r Iy

z

= Can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume a; is fixed for all coordinates i # j.
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‘ H = {hq : a € A} is a universal family of hash functions.
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z

= Can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume a; is fixed for all coordinates i # j.

= Since p is prime, a;z = m mod p has at most one solution among p
possibilities. <= See lemma on the next slide.
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Designing a universal family of hash functions

THEOREM
‘ H = {hq : a € A} is a universal family of hash functions.

Proof: Let x = (21, z2,...,z») and y = (y1, ..., yr) be two distinct elements of
U. We need to show that P[hq(z) = ha(y)] < 1/p.

= Since x # y, there exists an integer j such that x; # y;.

* We have ha(z) = ha(y) iff Y, aizi = >.;_, aiys mod p, i.e.,

aj (y; —w;) =Y _ai(zi—y;) modp
N——-r Iy

z

= Can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume a; is fixed for all coordinates i # j.

= Since p is prime, a;z = m mod p has at most one solution among p
possibilities. <= See lemma on the next slide.

» Thus Plha(z) = ha(y)] < 1/p.
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Number theory fact

FACT

Let p be prime, and let z # 0 mod p. Then az = m mod p has at most one
solution 0 < a < p.
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Let p be prime, and let z # 0 mod p. Then az = m mod p has at most one
solution 0 < a < p.

Proof. The proof is by contradiction.
= Suppose 0 < a1 < pand 0 < a2 < p are two different solutions.
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Proof. The proof is by contradiction.
= Suppose 0 < a1 < pand 0 < a2 < p are two different solutions.
= Then (a1 — a2)z =0 mod p; hence (a1 — a2)z is divisible by p.
= Since z # 0 mod p, we know that z is not divisible by p.
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Number theory fact

FACT

Let p be prime, and let z # 0 mod p. Then az = m mod p has at most one
solution 0 < a < p.

Proof. The proof is by contradiction.
= Suppose 0 < a1 < pand 0 < a2 < p are two different solutions.
= Then (a1 — a2)z =0 mod p; hence (a1 — a2)z is divisible by p.
= Since z # 0 mod p, we know that z is not divisible by p.
= It follows that (a1 — a2) is divisible by p.
* This implies a1 = as.

[ use the fact that p is prime]
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Number theory fact

FACT

Let p be prime, and let z # 0 mod p. Then az = m mod p has at most one
solution 0 < a < p.

Proof. The proof is by contradiction.
= Suppose 0 < a1 < pand 0 < a2 < p are two different solutions.
= Then (a1 — a2)z =0 mod p; hence (a1 — a2)z is divisible by p.
= Since z # 0 mod p, we know that z is not divisible by p.
= It follows that (a1 — a2) is divisible by p.
* This implies a1 = as.

[ use the fact that p is prime]

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

THE UNIVERSITY
of EDINBURGH AFDS He Sun



Universal hashing: summary

Goal. Given a universe U, maintain a subset S C U so that insert, delete, and
lookup are efficient.
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Universal hashing: summary

Goal. Given a universe U, maintain a subset S C U so that insert, delete, and
lookup are efficient.

Universal hash function family. H = {h, : a € A},

he(x) = <Z aia:i) mod p

= Choose p so that n < p < 2n, where n = |S|.
= Fact: There exits a prime number between n and 2n.
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Universal hashing: summary

Goal. Given a universe U, maintain a subset S C U so that insert, delete, and
lookup are efficient.

Universal hash function family. H = {h, : a € A},
he(x) = (Z aia:i> mod p
i=1

= Choose p so that n < p < 2n, where n = |S|.
= Fact: There exits a prime number between n and 2n.

Consequence.
= Space used = ©(n).
» Expected number of collisions per operation is < 1.

= O(1) time per insert, delete, or lookup
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Applications of hashing: finger printing

Problem. Suppose there are two documents X and Y located at two different
places, and we want to know if these two documents are the same.
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Applications of hashing: finger printing

Problem. Suppose there are two documents X and Y located at two different
places, and we want to know if these two documents are the same.

A naive solution. Send two documents to the same place, and make a
deterministic comparison.
This method has zero-error, but produces high communication cost.
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Applications of hashing: finger printing (cont.)

An alternative solution. Use a universal hash function i to map each document to
a k-bit string. We only need to send h, and h(X)(or h(Y")) instead.

Generate h & send h, h(X)

return if A(X) = h(Y)
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Applications of hashing: finger printing (cont.)

An alternative solution. Use a universal hash function i to map each document to
a k-bit string. We only need to send h, and h(X)(or h(Y")) instead.

Generate h & send h, h(X)

return if A(X) = h(Y)

Analysis of the error probability.

Phenler] = Pren[h(X) # h(Y)|X = Y]+ Preu[h(X) = H(Y)|X # Y]
=0+ Pren[h(X) =h(Y)|X #Y]
<1/2%.
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Pairwise independent hash functions

PAIRWISE INDEPENDENCE

A family of functions H = {h | h : U +— [n]} is pairwise independent if, for any
h chosen uniformly at random from H, the following holds:

1. h(z) is uniformly distributed in [n] for any z € U;

2. Forany z1 # x2 € U, h(z1) and h(z2) are independent.
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Pairwise independent hash functions

PAIRWISE INDEPENDENCE

A family of functions H = {h | h : U +— [n]} is pairwise independent if, for any
h chosen uniformly at random from H, the following holds:

1. h(z) is uniformly distributed in [n] for any z € U;
2. Forany z1 # x2 € U, h(z1) and h(z2) are independent.

These two conditions state that for any different 1 # z» € U, and any
Y1, Y2 € [n], it holds that
1
Pren [h(21) = 11 A h(22) = y2] = —

where the probability above is over all random choices of a function from H.
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Construction of pairwise independent hash functions

THEOREM

Let p be a prime number, and let h,,, = (az + b) mod p. Define
H={hap|0<a,b<p-—1}.

Then H is a family of pairwise independent hash functions.
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Construction of pairwise independent hash functions

THEOREM

Let p be a prime number, and let h,,, = (az + b) mod p. Define
H={hap|0<a,b<p-—1}.

Then H is a family of pairwise independent hash functions.

Recall Z, = {0,1,...,p — 1}

Proof. We need to show that, for any two z1 # x2 € Z, and any y1,y2 € Zy, it
holds

Pren [h(:cl) =y N\ h(mg) = y2] _ 1/p2.
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Construction of pairwise independent hash functions

THEOREM

Let p be a prime number, and let h,,, = (az + b) mod p. Define
H={hap|0<a,b<p-—1}.

Then H is a family of pairwise independent hash functions.

Recall Z, = {0,1,...,p — 1}

Proof. We need to show that, for any two z1 # x2 € Z, and any y1,y2 € Zy, it
holds
Pren [h(z1) = y1 A h(z2) =12 = 1/p°.

For any a, b, the conditions that ha.b (1) = y1 and hep(x2) = y2 yield two
equations
ar1 +b=y1 mod p,

ax2 +b=1y2 mod p.
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Construction of pairwise independent hash functions

THEOREM

Let p be a prime number, and let h,,, = (az + b) mod p. Define
H={hap|0<a,b<p-—1}.

Then H is a family of pairwise independent hash functions.

Recall Z, = {0,1,...,p — 1}

Proof. We need to show that, for any two z1 # x2 € Z, and any y1,y2 € Zy, it
holds
Pren [h(:cl) =y N\ h(mg) = y2] _ 1/172-
For any a, b, the conditions that ha.b (1) = y1 and hep(x2) = y2 yield two
equations
ar1 +b=y1 mod p,

arz2 +b=1y2 mod p.

Such system has a unique solution of @ and b, out of p* possible pairs of (a, b).

Hence, the equation above holds.
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Generalisation: k-wise independence

The set H = {h : U — [n]} is call a set of k-wise independent family of hash
functions if for any distinct z1, ...,z € U, and any y1, ..., yx € [n],
1

Phem [h(x1) = y1 Ah(z2) = y2 A~ A (k) = yi] = =
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Generalisation: k-wise independence

The set H = {h : U — [n]} is call a set of k-wise independent family of hash
functions if for any distinct z1, ...,z € U, and any y1, ..., yx € [n],

Phen [h(z1) = y1r Ah(z2) =y2 A Ah(zr) = yk] = —

~——— CONSTRUCTION OF k-WISE HASH FUNCTIONS

Let p be a prime, and £ > 2 be an integer. Assume that a seed s =
(ao, - ..,ax—1) is chosen uniformly at random from Z£. Then, the set of func-
tions H = {hs|s € Z}}, where

k—1

hs(z) = Zaixi mod p

=0

is k-wise independent.
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