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Lecture 2: Johnson-Lindenstrauss Lemma

In today’s lecture, we study the Johnson-Lindenstrauss lemma, which states that any n points in
high dimensional Eucliean space can be mapped onto k dimensions where k = O(logn/e?) without
distorting the Euclidean distance between any pair of points more than a factor of 1 & «¢.

Lemma 1 (Johnson-Lindenstrauss, 1984). Let X C R? be a set of n points, € € (0,1/5). Then, there
is a random matriz ® € RF*? such that it holds with constant probability that

Yo,y e X : (1 =e)llz —yll2 < [|Px — yll2 < (1 + )]z — yllo, (1)

where k = O <1°g").
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Remark:
e The statement above holds for all pair of points, instead of most pairs of points.

e The number of dimensions in the projection is only a logarithmic function of n, and independent
of d. Since k is usually much less than d, we sometimes call this lemma dimension reduction
lemma. In applications, the dominant term is typically the 1/£2 term.

e The matrix ® is independent of the input points.

e The number of dimensions needed is shown to be optimal. It is known that there is a set of points
in R% such that, in order to have (1), k = Q <1°g )

2

The key to prove the Johnson-Lindenstrauss lemma is the following technical lemma.

Lemma 2. Given the same hypothesis, there exists a matriz ® € RF*? such that it holds for any x € R?
that ,
Pr[||®zll, < (1—¢)|all2 or [zl > (1+e)l|z]2] < 2-e7F=/5,

Proof of Lemma 1. For any x,y € X we define z,, = x —y. We apply Lemma 2 on all possible z; ,.
Hence, using the union bound the total “failure” probability is at most

n(nz_ ]‘) . 2 . 67143'52/57

which is a constant if k = O (108%”) O
We list several facts about the normal distributions that will be used in our proof.

Fact 3. The following statements hold:
1. If X; ~ N(ui,0?) and a; € R for any 1 < i < n, then it holds that

Z aiXi ~ N (Z Qi [, Z(Cbidi)2> .

i=1 =1 =1



2. If Xq,..., X are independent, standard normal random variables, then the sum of their squares

k
Q=) X/
i=1

is distributed according to the x* distribution with k degree of freedom, denoted as Q ~ x*(k).

3. The moment generating function of a random variable is M, (t) = E [etX} fort e R. If X ~ x%(k),
then it holds that E [e!X ] = (1 — 2t)7#/2.

Proof of Lemma 2. Let us define ® as a matrix

gu g12 913 --. gid

b — L |9 922 923 .. God
VE [coeee ’

91 9k2 9k3 ---  Gkd

where every g; j ~ N(0,1). Let x € R? be an arbitrary vector, and we assume without loss of generality
that ||z|| = 1. We define y = ® - x. By definition, we have for each 1 <1 < k that

d
1
Yi = ﬁ Zgi,jznj.

i=1

We apply Fact 3 and obtain that

For ease of analysis we introduce hq, ..., hg, which are independent and identically distributed random

variables such that . .
doni=kY ul. (2)
i=1 i=1

Hence, it holds that

k
ny >1+e¢
i=1

Pr[||®z| > 14¢e]<Pr[||®z]*>1+¢] =Pr

By (2) we have for any A > 0 that

k
S hiz(1+e) -k
=1

Pr[||®z|| >1+¢] < Pr — Pr [ex-zﬁzlhf > eA(Hs)-k] .

Since the h;’s are independent to each other, we apply Markov’s inequality and obtain

B[ Th] I [
Alre)k oA(1+e)k

Pr [ex-zi-;l P> ex<1+s>~k} <

Since h; ~ N(0,1) and E [eAh?} = (1 — 2t)"Y2 by using the moment generating function of 2

distributions, we have

k —kJog(1—2))
AR R S Ate)k (I/VI=2))" e 2
Pr [e 1 >e } < eA(1+e)k - eM1+e)-k



Since log(1 — x) > —z — 22/2 — 23/2 for = € (0,1/5), we assume A < 1/10 and have

ko (2242X24403)

k 2 €2 2

Pr|edTioih? > e)\(1+e)-k] < < o—ke?/5
eM(1+e)k

by setting A = /2. Combining all the calculations above gives us that

Pr[||®z] > 1+¢e] <e */5,

By the symmetry of random variables y;’s and the union bound, we have

Pr[[|a]|; < (1—2)|afl; or @]z > (1+¢)||z]l2] < 2- e/,
which finishes the proof.



