University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2025)

Lecture 2: Johnson-Lindenstrauss Lemma

In today's lecture, we study the Johnson-Lindenstrauss lemma, which states that any n points in high dimensional Eucliean space can be mapped onto k dimensions where $k = O(\log n/\varepsilon^2)$ without distorting the Euclidean distance between any pair of points more than a factor of $1 \pm \varepsilon$.

Lemma 1 (Johnson-Lindenstrauss, 1984). Let $X \subseteq \mathbb{R}^d$ be a set of *n* points, $\varepsilon \in (0, 1/5)$. Then, there is a random matrix $\Phi \in \mathbb{R}^{k \times d}$, such that it holds with constant probability that

$$\forall x, y \in X: \qquad (1 - \varepsilon) \|x - y\|_2 \le \|\Phi x - \Phi y\|_2 \le (1 + \varepsilon) \|x - y\|_2, \tag{1}$$

where $k = O\left(\frac{\log n}{\varepsilon^2}\right)$.

Remark:

- The statement above holds for *all pair* of points, instead of most pairs of points.
- The number of dimensions in the projection is only a logarithmic function of n, and independent of d. Since k is usually much less than d, we sometimes call this lemma dimension reduction lemma. In applications, the dominant term is typically the $1/\varepsilon^2$ term.
- The matrix Φ is independent of the input points.
- The number of dimensions needed is shown to be optimal. It is known that there is a set of points in \mathbb{R}^d such that, in order to have (1), $k = \Omega\left(\frac{\log n}{\varepsilon^2}\right)$.

The key to prove the Johnson-Lindenstrauss lemma is the following technical lemma.

Lemma 2. Given the same hypothesis, there exists a matrix $\Phi \in \mathbb{R}^{k \times d}$ such that it holds for any $x \in \mathbb{R}^d$ that

$$\mathbf{Pr}\left[\|\Phi x\|_{2} \le (1-\varepsilon)\|x\|_{2} \text{ or } \|\Phi x\|_{2} \ge (1+\varepsilon)\|x\|_{2}\right] \le 2 \cdot e^{-k \cdot \varepsilon^{2}/5}$$

Proof of Lemma 1. For any $x, y \in X$ we define $z_{x,y} = x - y$. We apply Lemma 2 on all possible $z_{x,y}$. Hence, using the union bound the total "failure" probability is at most

$$\frac{n(n-1)}{2} \cdot 2 \cdot \mathrm{e}^{-k \cdot \varepsilon^2/5},$$

which is a constant if $k = O\left(\frac{\log n}{\varepsilon^2}\right)$.

We list several facts about the normal distributions that will be used in our proof.

Fact 3. The following statements hold:

1. If $X_i \sim N(\mu_i, \sigma_i^2)$ and $a_i \in \mathbb{R}$ for any $1 \leq i \leq n$, then it holds that

$$\sum_{i=1}^n a_i X_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n (a_i \sigma_i)^2\right).$$

2. If X_1, \ldots, X_k are independent, standard normal random variables, then the sum of their squares

$$Q = \sum_{i=1}^{k} X_i^2$$

is distributed according to the χ^2 distribution with k degree of freedom, denoted as $Q \sim \chi^2(k)$.

3. The moment generating function of a random variable is $M_x(t) = \mathbf{E} \left[e^{tX} \right]$ for $t \in \mathbb{R}$. If $X \sim \chi^2(k)$, then it holds that $\mathbf{E} \left[e^{tX} \right] = (1-2t)^{-k/2}$.

Proof of Lemma 2. Let us define Φ as a matrix

$$\Phi = \frac{1}{\sqrt{k}} \begin{bmatrix} g_{11} & g_{12} & g_{13} & \cdots & g_{1d} \\ g_{21} & g_{22} & g_{23} & \cdots & g_{2d} \\ \vdots & \vdots & \vdots \\ g_{k1} & g_{k2} & g_{k3} & \cdots & g_{kd} \end{bmatrix},$$

where every $g_{i,j} \sim N(0,1)$. Let $x \in \mathbb{R}^d$ be an arbitrary vector, and we assume without loss of generality that ||x|| = 1. We define $y = \Phi \cdot x$. By definition, we have for each $1 \leq i \leq k$ that

$$y_i = \frac{1}{\sqrt{k}} \sum_{j=1}^d g_{i,j} x_j.$$

We apply Fact 3 and obtain that

$$y_i \sim N\left(0, \frac{1}{k} \sum_{j=1}^d x_j^2\right),$$

i.e. $y_i \sim N(0, 1/k)$ due to the fact that ||x|| = 1. This gives us that $\sqrt{k}y_i \sim N(0, 1)$, and therefore

$$\sum_{i=1}^{k} \left(\sqrt{k} y_i \right)^2 = k \sum_{i=1}^{k} y_i^2 \sim \chi^2(k).$$

For ease of analysis we introduce h_1, \ldots, h_k , which are independent and identically distributed random variables such that

$$\sum_{i=1}^{k} h_i^2 = k \sum_{i=1}^{k} y_i^2.$$
(2)

Hence, it holds that

$$\mathbf{Pr}\left[\|\Phi x\| \ge 1+\varepsilon\right] \le \mathbf{Pr}\left[\|\Phi x\|^2 \ge 1+\varepsilon\right] = \mathbf{Pr}\left[\sum_{i=1}^k y_i^2 \ge 1+\varepsilon\right].$$

By (2) we have for any $\lambda > 0$ that

$$\mathbf{Pr}\left[\left\|\Phi x\right\| \ge 1+\varepsilon\right] \le \mathbf{Pr}\left[\sum_{i=1}^{k} h_i^2 \ge (1+\varepsilon) \cdot k\right] = \mathbf{Pr}\left[e^{\lambda \cdot \sum_{i=1}^{k} h_i^2} \ge e^{\lambda(1+\varepsilon) \cdot k}\right]$$

Since the h_i 's are independent to each other, we apply Markov's inequality and obtain

$$\mathbf{Pr}\left[e^{\lambda \cdot \sum_{i=1}^{k} h_{i}^{2}} \ge e^{\lambda(1+\varepsilon) \cdot k}\right] \le \frac{\mathbf{E}\left[e^{\lambda \cdot \sum_{i=1}^{k} h_{i}^{2}}\right]}{e^{\lambda(1+\varepsilon) \cdot k}} = \frac{\prod_{i=1}^{k} \mathbf{E}\left[e^{\lambda \cdot h_{i}^{2}}\right]}{e^{\lambda(1+\varepsilon) \cdot k}}$$

Since $h_i \sim N(0,1)$ and $\mathbf{E}\left[e^{\lambda h_i^2}\right] = (1-2t)^{-1/2}$ by using the moment generating function of χ^2 distributions, we have

$$\mathbf{Pr}\left[e^{\lambda \cdot \sum_{i=1}^{k} h_{i}^{2}} \ge e^{\lambda(1+\varepsilon) \cdot k}\right] \le \frac{\left(1/\sqrt{1-2\lambda}\right)^{k}}{e^{\lambda(1+\varepsilon) \cdot k}} = \frac{e^{-\frac{k}{2} \cdot \log(1-2\lambda)}}{e^{\lambda(1+\varepsilon) \cdot k}}.$$

Since $\log(1-x) \ge -x - x^2/2 - x^3/2$ for $x \in (0, 1/5)$, we assume $\lambda \le 1/10$ and have

$$\mathbf{Pr}\left[e^{\lambda \cdot \sum_{i=1}^{k} h_{i}^{2}} \ge e^{\lambda(1+\varepsilon) \cdot k}\right] \le \frac{e^{\frac{k}{2} \cdot (2\lambda+2\lambda^{2}+4\lambda^{3})}}{e^{\lambda(1+\varepsilon) \cdot k}} \le e^{-k\varepsilon^{2}/5}$$

by setting $\lambda = \varepsilon/2$. Combining all the calculations above gives us that

$$\Pr\left[\left\|\Phi x\right\| \ge 1 + \varepsilon\right] \le e^{-k\varepsilon^2/5}$$

By the symmetry of random variables y_i 's and the union bound, we have

$$\mathbf{Pr} \left[\|\Phi x\|_{2} \le (1-\varepsilon) \|x\|_{2} \text{ or } \|\Phi x\|_{2} \ge (1+\varepsilon) \|x\|_{2} \right] \le 2 \cdot e^{-k\varepsilon^{2}/5},$$

which finishes the proof.