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Lecture 4: Best-Fit Subspaces and Singular Value Decomposition (2)

Let A € R™*™ be a matrix whose SVD is written as ) . o;u;0]. We define B = ATA, i.e.,
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The matrix B € R™" is a square and symmetric, and has the same left and right-singular
vectors. In particular, it holds for any v; that
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meaning that v; is an eigenvector of B with the corresponding eigenvalue ajz. We write \; = o
and v; for the eigenvalues and their corresponding eigenvectors of B. Without loss of generality,
we assume that \y > Ay > ... > \,. Notice that all the eigenvalues \; > 0, i.e., matrix B is
positive semi-definite (PSD).

Now we consider B2. By definition, we have that
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By induction we have that

BF = B*1B = <Z ALy ) <Z)\ ;U > = Z/\fvivg
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Hence, if A\; > Ay, then the first term in the summation dominates, and B* — )\11}11}1 However,

this approach to approximate v; requires computing B* for some k, which is inefficient as the

matrix multiplication takes time €2(n?). Therefore, a more efficient approach is needed.

In this lecture, we study the power method for computing eigenvalues and eigenvectors,
whose ideas are summarised as follows: instead of computing B¥, we select a random vector z
and compute B*z. To see why this approach works, we write z = >, civ; for some constants
¢; € R. Then, it holds that

BFg = (Z )\fvivg) . (Z civi> = Zci)\fvi.
For time complexity, notice that computing Bz for any vector x takes O(n + nnz(B)) time if
the non-zero entries of matrix B are stored by an adjacency list, where nnz(B) is the number of
non-zero entries of matrix B. Hence, the total runtime for computing B*z is O(k - (n +nnz(B))).
For many applications where the matrix B € R™" is sparse, e.g., nnz(B) = O(n), the power
method presents a vast speedup comparing with the naive algorithm that computes B* directly.
The formal description of the power method for computing A; is shown in Algorithm 1.



Remark. It is important to notice that, even matrix A is spare, the matrix B = ATA might
not be a sparse matrix any more. In such case, to compute B*x it suffices to compute (ATA)k x,
which can be done in O(k - (n +1nnz(A))) time.

Algorithm 1 Power method for approximating A\,
Input: a PSD symmetric matrix B € R"*", and positive integer k
Choose ¢ uniformly at random from {—1,1}".
for =1 to k do
r; = Bri 4
end for
return x;

To analyse the algorithm, by definition we have that oy (A) = max,=1 ||Az||, and A\ (B) =

0?(A). Hence, we can write the largest eigenvalue of B as
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This is called the Courant-Fischer Characterisation of Figenvalues. Hence, it suffices to study
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Theorem 1. For every PSD matrix B, positive integer k and parameter € > 0, with probability
3/16 over the initial choices of xy, Algorithm 1 outputs a vector xy such that
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In particular, when setting k = O(logn/e), we have that
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The proof is based on the following two lemmas.

Lemma 2. Let v € R" such that ||v|| = 1. Sample uniformly x € {—1,1}". Then it holds that
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Lemma 3. Let x € R" be a vector such that |(x,v1)| > 1/2. Then, for every positive integer k
and positive € > 0, if we define y = Bz, then we have that
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Proof of Theorem 1. By Lemma 2, with constant probability, a randomly sampled = € {—1,1}"
satisfies |(x,v)| > 1/2 for any ||v|| = 1. Conditioning on this event, Lemma 3 states that
yT' By 1
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Then, the theorem holds by the fact that ||z[|*> = n. O



Proof of Lemma 2. Define a random variable S = (z,v). Then, it holds that E[S] = 0,

E[S?] = ||v||* = 1, and!
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Recall that the Paley-Zygmund inequality states that if Z is a non-negative random variable
with finite variance, then it holds for every 0 < § <1 that
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which follows by noticing that
E[Z]| =E[Z - 1z.82] + E|[Z - 125582]
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where the first inequality follows by Cauchy-Schwarz inequality. We apply the Paley-Zygmund
inequality to the case Z = S? and 6 = 1/4 and have that
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Proof of Lemma 3. We write x as a linear combination of the eigenvectors
T=a1v1 + -+ apUy,
where the coefficients can be computed as a; = (z,v;). Then, we rewrite y = B*z as
y = a vy + - a, Moo,

and therefore .
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Without loss of generality let ¢ be the number of eigenvalues larger than A; - (1 — ¢). Then, it
holds that

as well as
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Since all the eigenvalues \; for i > ¢ + 1 is at most A; - (1 — £), we have that
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1Obtaining the equality below is not straightforward, and involves some calculations. We leave this for
homework.



where (2) follows from the fact that a? = |(z,v;)|* > 1/4 by the assumption of the Lemma.
Hence, we have that
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Combining (1) with (3) gives us that
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Sometimes, we know the eigenvector v, corresponding to \;, and we need to approximate
vy and Ay. Then a similar approach can be applied, but we only need to ensure that the
initial vector used for the “power iterations” is perpendicular to vq, see Algorithm 2 for formal
description.

Algorithm 2 Power method for approximating Ao

Input: a PSD symmetric matrix B € R"*", and positive integer k
Choose x uniformly at random from {—1,1}".
Let xg = x — (v1,2) - vy
for i =1 to k do
r; = Bx;_1
end for
return x;

Now we briefly analyse this algorithm. We assume that vy,...,v, is an orthonormal basis
of the eigenvectors for the eigenvalues \; > ... > A\, of B. Then we write the initial random
vector as

T =a1U1 + -+ QpUn,

and with probability at least 3/16 it holds that |as| = |(z,v9)| > 1/2. Then, ¢ is the projection
of = on the subspace orthogonal to vy, i.e.,

Lo = QVg + - -+ + ApUp.
Notice that [|zg]| < n. Furthermore, the output x; can be written as
Ty = ag)\gvg 4+ -+ an)\ﬁvn.
Then, we can apply the same analysis as before, and have the following result:

Theorem 4. For every PSD matriz B € R"*", positive integer k and parameter ¢ > 0, with
constant probability over the choices of x, Algorithm 2 outputs a vector y L vy such that
yT By 1
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where Ay 1s the second largest eigenvalue of B, counting multiplicities.



