
University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2025)

Lecture 4: Best-Fit Subspaces and Singular Value Decomposition (2)

Let A ∈ Rm×n be a matrix whose SVD is written as
∑

i σiuiv
⊺
i . We define B = A⊺A, i.e.,

B = A⊺A =

(∑
i

σiviu
⊺
i

)(∑
i

σiuiv
⊺
i

)
=
∑
i

∑
j

σiσjvi(u
⊺
i uj)v

⊺
j

=
∑
i

σ2
i viv

⊺
i .

The matrix B ∈ Rn×n is a square and symmetric, and has the same left and right-singular
vectors. In particular, it holds for any vj that

Bvj =

(∑
i

σ2
i viv

⊺
i

)
vj = σ2

j vj,

meaning that vj is an eigenvector of B with the corresponding eigenvalue σ2
j . We write λi = σ2

i

and vi for the eigenvalues and their corresponding eigenvectors of B. Without loss of generality,
we assume that λ1 ≥ λ2 ≥ . . . ≥ λn. Notice that all the eigenvalues λi ≥ 0, i.e., matrix B is
positive semi-definite (PSD).

Now we consider B2. By definition, we have that

B2 =

(∑
i

λiviv
⊺
i

)(∑
i

λiviv
⊺
i

)
=
∑
i

λ2
i viv

⊺
i .

By induction we have that

Bk = Bk−1B =

(∑
i

λk−1
i viv

⊺
i

)(∑
i

λiviv
⊺
i

)
=
∑
i

λk
i viv

⊺
i .

Hence, if λ1 > λ2, then the first term in the summation dominates, and Bk → λk
1v1v

⊺
1 . However,

this approach to approximate v1 requires computing Bk for some k, which is inefficient as the
matrix multiplication takes time Ω(n2). Therefore, a more efficient approach is needed.

In this lecture, we study the power method for computing eigenvalues and eigenvectors,
whose ideas are summarised as follows: instead of computing Bk, we select a random vector x
and compute Bkx. To see why this approach works, we write x =

∑
i civi for some constants

ci ∈ R. Then, it holds that

Bkx =

(∑
i

λk
i viv

⊺
i

)
·

(∑
i

civi

)
=
∑
i

ciλ
k
i vi.

For time complexity, notice that computing Bx for any vector x takes O(n+ nnz(B)) time if
the non-zero entries of matrix B are stored by an adjacency list, where nnz(B) is the number of
non-zero entries of matrix B. Hence, the total runtime for computing Bkx is O(k · (n+nnz(B))).
For many applications where the matrix B ∈ Rn×n is sparse, e.g., nnz(B) = O(n), the power
method presents a vast speedup comparing with the naive algorithm that computes Bk directly.
The formal description of the power method for computing λ1 is shown in Algorithm 1.

Remark. It is important to notice that, even matrix A is spare, the matrix B = A⊺A might
not be a sparse matrix any more. In such case, to compute Bkx it suffices to compute (A⊺A)k x,
which can be done in O(k · (n+ nnz(A))) time.

Algorithm 1 Power method for approximating λ1

1: Input: a PSD symmetric matrix B ∈ Rn×n, and positive integer k
2: Choose x0 uniformly at random from {−1, 1}n.
3: for i = 1 to k do
4: xi = Bxi−1

5: end for
6: return xk

To analyse the algorithm, by definition we have that σ1(A) = max∥x∥=1 ∥Ax∥, and λ1(B) =
σ2
1(A). Hence, we can write the largest eigenvalue of B as

λ1(B) = max
∥x∥=1

∥Ax∥2 = max
x∈Rn

x ̸=0

x⊺A⊺Ax

∥x∥
= max

x∈Rn

x ̸=0

x⊺Bx

∥x∥
.

This is called the Courant-Fischer Characterisation of Eigenvalues. Hence, it suffices to study
(x⊺

kBxk) · (x⊺
kxk)

−1.

Theorem 1. For every PSD matrix B, positive integer k and parameter ε > 0, with probability
3/16 over the initial choices of x0, Algorithm 1 outputs a vector xk such that

x⊺
kBxk

x⊺
kxk

≥ (1− ε) · λ1 ·
1

1 + 4n(1− ε)2k
.

In particular, when setting k = O(log n/ε), we have that

x⊺
kBxk

x⊺
kxk

≥ (1−O(ε))λ1.

The proof is based on the following two lemmas.

Lemma 2. Let v ∈ Rn such that ∥v∥ = 1. Sample uniformly x ∈ {−1, 1}n. Then it holds that

P

[
|⟨x, v⟩| ≥ 1

2

]
≥ 3

16
.

Lemma 3. Let x ∈ Rn be a vector such that |⟨x, v1⟩| ≥ 1/2. Then, for every positive integer k
and positive ε > 0, if we define y = Bkx, then we have that

y⊺By

y⊺y
≥ (1− ε) · λ1 ·

1

1 + 4∥x∥2(1− ε)2k
.

Proof of Theorem 1. By Lemma 2, with constant probability, a randomly sampled x ∈ {−1, 1}n
satisfies |⟨x, v⟩| ≥ 1/2 for any ∥v∥ = 1. Conditioning on this event, Lemma 3 states that

y⊺By

y⊺y
≥ (1− ε) · λ1 ·

1

1 + 4∥x∥2(1− ε)2k
.

Then, the theorem holds by the fact that ∥x∥2 = n.

2

Proof of Lemma 2. Define a random variable S = ⟨x, v⟩. Then, it holds that E[S] = 0,
E [S2] = ∥v∥2 = 1, and1

E
[
S4
]
= 3

n∑
i=1

v2i − 2
n∑

i=1

v4i ≤ 3.

Recall that the Paley-Zygmund inequality states that if Z is a non-negative random variable
with finite variance, then it holds for every 0 ≤ δ ≤ 1 that

P [Z ≥ δ · EZ] ≥ (1− δ)2 · (EZ)
2

E[Z2]
,

which follows by noticing that

E[Z] = E [Z · 1Z<δEZ] + E [Z · 1Z≥δEZ]

≤ δEZ +
√
EZ2 ·

√
E1Z≥δEZ

= δEZ +
√
EZ2 ·

√
P [Z ≥ δEZ],

where the first inequality follows by Cauchy-Schwarz inequality. We apply the Paley-Zygmund
inequality to the case Z = S2 and δ = 1/4 and have that

P
[
S2 ≥ δE[S2]

]
= P

[
S2 ≥ 1

4

]
≥
(
3

4

)2

· 1
3
=

3

16
.

Proof of Lemma 3. We write x as a linear combination of the eigenvectors

x = a1v1 + · · ·+ anvn

where the coefficients can be computed as ai = ⟨x, vi⟩. Then, we rewrite y = Bkx as

y = a1λ
k
1v1 + · · ·+ anλ

k
nvn,

and therefore

y⊺By =
n∑

i=1

a2iλ
2k+1
i ,

as well as

y⊺y =
n∑

i=1

a2iλ
2k
i .

Without loss of generality let ℓ be the number of eigenvalues larger than λ1 · (1− ε). Then, it
holds that

y⊺By ≥
ℓ∑

i=1

a2iλ
2k+1
i ≥ λ1(1− ε)

ℓ∑
i=1

a2iλ
2k
i . (1)

Since all the eigenvalues λi for i ≥ ℓ+ 1 is at most λ1 · (1− ε), we have that
n∑

i=ℓ+1

a2iλ
2k
i ≤ λ2k

1 · (1− ε)2k
n∑

i=ℓ+1

a2i

≤ λ2k
1 · (1− ε)2k∥x∥2

≤ 4a21λ
2k
1 · (1− ε)2k∥x∥2 (2)

≤ 4∥x∥2(1− ε)2k
ℓ∑

i=1

a2iλ
2k
i ,

1Obtaining the equality below is not straightforward, and involves some calculations. We leave this for
homework.

3

where (2) follows from the fact that a21 = |⟨x, v1⟩|2 ≥ 1/4 by the assumption of the Lemma.
Hence, we have that

y⊺y ≤
(
1 + 4∥x∥2(1− ε)2k

)
·

ℓ∑
i=1

a2iλ
2k
i . (3)

Combining (1) with (3) gives us that

y⊺By

y⊺y
≥ λ1 · (1− ε) · 1

1 + 4∥x∥2(1− ε)2k
.

Sometimes, we know the eigenvector v1 corresponding to λ1, and we need to approximate
v2 and λ2. Then a similar approach can be applied, but we only need to ensure that the
initial vector used for the “power iterations” is perpendicular to v1, see Algorithm 2 for formal
description.

Algorithm 2 Power method for approximating λ2

1: Input: a PSD symmetric matrix B ∈ Rn×n, and positive integer k
2: Choose x uniformly at random from {−1, 1}n.
3: Let x0 = x− ⟨v1, x⟩ · v1
4: for i = 1 to k do
5: xi = Bxi−1

6: end for
7: return xk

Now we briefly analyse this algorithm. We assume that v1, . . . , vn is an orthonormal basis
of the eigenvectors for the eigenvalues λ1 ≥ . . . ≥ λn of B. Then we write the initial random
vector as

x = a1v1 + · · ·+ anvn,

and with probability at least 3/16 it holds that |a2| = |⟨x, v2⟩| ≥ 1/2. Then, x0 is the projection
of x on the subspace orthogonal to v1, i.e.,

x0 = a2v2 + · · ·+ anvn.

Notice that ∥x0∥ ≤ n. Furthermore, the output xk can be written as

xk = a2λ
k
2v2 + · · ·+ anλ

k
nvn.

Then, we can apply the same analysis as before, and have the following result:

Theorem 4. For every PSD matrix B ∈ Rn×n, positive integer k and parameter ε > 0, with
constant probability over the choices of x, Algorithm 2 outputs a vector y ⊥ v1 such that

y⊺By

y⊺y
≥ λ2 · (1− ε) · 1

1 + 4n(1− ε)2k
,

where λ2 is the second largest eigenvalue of B, counting multiplicities.

4

