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Lecture 8: Graphs versus Matrices

Graphs are one of the most fundamental objects to represent the relations of data items and
are ubiquitous in every research field of computer science. Among many techniques studying
graphs, spectral graph theory investigates the algebraic properties of the matrices associated
with graphs, which has had a tremendous impact in computer science. In particular, spectral
techniques have been successfully used to overcome fundamental barriers faced by combinatorial
algorithms, and key concepts developed in algorithmic spectral graph theory have led to many
breakthroughs in designing fast algorithms in data science. In the upcoming five lectures, we
will study algebraic properties of graphs: we will see how basic graph properties can be derived
from the eigenvalues of a graph matrix, and how algebraic techniques will be applied to design
faster graph algorithms.

We assume that G = (V,E) is an undirected and unweighted graph with n vertices. The set
of neighbours of vertex u is represented by N(u), and its degree is du = |N(u)|. For simplicity,
we write u ∼ v if {u, v} is an edge of G. For any set S ⊆ V , let vol(S) =

∑
u∈S du. In particular,

let vol(G) =
∑

u∈V [G] du.

1 Graph Laplacians
We first define the matrices used in the lecture. Let D ∈ Rn×n be the diagonal matrix where
Du,u = du for any vertex u. The adjacency matrix of graph G is the matrix A defined by
Au,v = 1 if u ∼ v, and Au,v = 0 otherwise. In particular, we write Au,u = 1 if there is a self-loop
of vertex u. The Laplacian matrix of G is defined by L = D − A, where A is the adjacency
matrix of G. The normalised Laplacian matrix of G is defined by

L = D−1/2LD−1/2 = I −D−1/2AD−1/2,

Hence, it holds that L = I − (1/d) ·A if G is d-regular, see Figure 1 for example. For matrix L,
we denote its n eigenvalues with λ1 ≤ . . . ≤ λn with corresponding orthonormal eigenvectors
f1, . . . , fn. The set of n eigenvalues {λi}ni=1 together with their multiplicities is called the
spectrum of G.

LG =


1 −1/3 −1/3 −1/3

−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1


Figure 1: The normalised Laplacian matrix of a complete graph with 4 vertices.

Lemma 1. It holds that λ1(L) = 0 with the associated eigenvector D1/2 · 1.



Proof. Let x ∈ Rn be any vector. Then it holds that

x⊺Lx =
∑
u

x2
u −

∑
u∼v

2xuxv√
dudv

=
∑
u

du

(
xu√
du

)2

−
∑
u∼v

2xuxv√
dudv

=
∑
u∼v

(
xu√
du

− xv√
dv

)2

,

which implies that
x⊺Lx
x⊺x

≥ 0

holds for any x ∈ Rn. Since

λ1 = min
x∈Rn,x ̸=0

x⊺Lx
x⊺x

≥ 0,

and
(
D1/21

)⊺ L (D1/21
)
= 0, the statement holds.

Among the n eigenvalues, λ2 plays a central role in studying many properties of a graph.
Here, we present some simple bounds.

Theorem 2. It holds that
λ2 = min

f⊥D1

∑
u∼v(fu − fv)

2∑
u du · f 2

u

.

Proof. The statement follows from the proof of Lemma 1 and the fact that, for any g = D1/2f ∈
Rn orthogonal to D1/21, we have that

⟨g,D1/21⟩ = 0 ⇔ ⟨D1/2f,D1/21⟩ = 0 ⇔ ⟨f,D1⟩ = 0.

Execrise 3. λ2 ≤ n/(n− 1), and λ2 = n/(n− 1) iff G is a complete graph.

Lemma 4. If G is not a complete graph, then λ2 ≤ 1.

Proof. Since G is not a complete graph, there are vertices u, v which are not connected by an
edge. Define a vector f ∈ Rn such that

fw =


du if w = v,

−dv if w = u,

0 otherwise.

Notice that f ⊥ D1. By Theorem 2, it holds that

λ2 ≤
∑

u∼v(fu − fv)
2∑

u du · f 2
u

= 1.

Execrise 5. G has k connected components iff λk = 0 and λk+1 > 0. In particular, G is
connected iff λ2 > 0.

Lemma 6. It holds that λn ≤ 2. In particular, λn = 2 iff a connected component of G is a
non-empty bipartite graph.
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Proof. Let g ∈ Rn be any vector. From the proof of Lemma 1, it holds that

⟨g,Lg⟩
⟨g, g⟩

=

∑
u∼v(fu − fv)

2∑
u du · f 2

u

≤
∑

u∼v 2(f
2
u + f 2

v )∑
u du · f 2

u

=
2 ·
∑

u du · f 2
u∑

u du · f 2
u

= 2. (1)

Moreover, by (1) we know that λn = 2 iff the eigenvector associated with λn satisfies∑
u∼v

(fu − fv)
2 =

∑
u∼v

2(f 2
u + f 2

v ),

i.e.,
∑

u∼v(fu + fv)
2 = 0, which is equivalent to say that

fu = −fv, for every u ∼ v. (2)

Since f is an eigenvector, there is at least one coordinate fu ̸= 0. Based on this and (2), the
sign of each fv ̸= 0 gives the partition of a connected component of G.

We have seen that some of a graph’s properties can be obtained by its graph spectrum. To
summarise our discussion, let us look at several examples.

Example 7. Let the spectrum of a graph G be

0, 2/3, 2/3, 2/3, 2/3, 2/3, 5/3, 5/3, 5/3, 5/3.

From this sequence, we know that (i) G has 10 vertices; (2) G is connected; (3) G is not bipartite.

Example 8. Let the spectrum of a graph G be

0, 0, 0.69, 0.69, 1.5, 1.5, 1.8, 1.8.

From this sequence, we know that (i) G has 8 vertices; (2) G is disconnected, and has 2 connected
components; (3) none of G’s connected component is bipartite.

Finally, we show some examples of the spectra for specific graphs.

• For the complete graph Kn on n vertices, the eigenvalues are 0 and n/(n − 1) with
multiplicity n− 1.

• For the star Sn on n vertices, the eigenvalues are 0, 1 with multiplicity n− 2, and 2.

• For the path Pn on n vertices, the eigenvalues are 1− cos
(

πk
n−1

)
for k = 0, 1, . . . , n− 1.

2 Expander Mixing Lemma
Let λ = maxi≥2 |1− λi| the spectral expansion of G.

Theorem 9 (Expander Mixing Lemma). Let G be a graph, and X, Y ⊂ V be sets of vertices.
Then, it holds that ∣∣∣∣|E(X, Y )| − volX · volY

volG

∣∣∣∣ ≤ λ ·
√
volX volY . (3)

Notice that volX · volY/ volG is the expected value of |E(X, Y )| in a random graph of edge
density volG/n2. Hence, the left side of (3) is the difference between |E(X, Y )| and its expected
value in a random graph. So, a smaller value of λ shows that the graph is more close to be
a random graph. Before proving the expander mixing lemma, we look at its applications in
analysing combinatorial properties of a graph.
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Corollary 10. The volume of any independent set in G is at most λ · volG.

Proof. Let X = Y be an independent set of G. Then |E(X,X)| = 0. We apply Theorem 9 and
obtain that ∣∣∣∣(volX)2

volG

∣∣∣∣ ≤ λ · volX,

which implies that volX ≤ λ · volG. Hence, the volume of any independent set in G is at most
λ · volG. For the case of regular graphs, the number of vertices in an independent set is at most
λ · n.

Corollary 11. Let G be a regular graph. Then the chromatic number of G is at least 1/λ.

Proof. Let c : V → {1, . . . , k} be a colouring of G. Then, for every 1 ≤ i ≤ k, c−1(i) is an
independent set. Since the number of vertices in an independent set is at most λn, the chromatic
number is at least 1/λ.

Proof of Theorem 9. For any set S ⊂ V , let χS be the indicator vector of set S, i.e., χS(u) = 1
if u ∈ S, and χS(u) = 0 otherwise. Then, we have that

|E(X, Y )| = ⟨χX , AχY ⟩ = χ⊺
XD

1/2(I − L)D1/2χY .

Without loss of generality, we write

D1/2χX =
n∑

i=1

aifi

and

D1/2χY =
n∑

i=1

bifi,

where f1, . . . , fn are orthonormal eigenvectors of L, and f1 = D1/21/
√
volG. Hence, we have

that a1 = volX/
√
volG and b1 = volY/

√
volG. With this, it holds that∣∣∣∣|E(X, Y )| − volX · volY

volG

∣∣∣∣ = ∣∣χ⊺
XD

1/2(I − L)D1/2χY − a1b1
∣∣

=

∣∣∣∣∣
(

n∑
i=1

aif
⊺
i

)
(I − L)

(
n∑

i=1

bifi

)
− a1b1

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=2

(1− λi) · aibi

∣∣∣∣∣
≤ λ

√√√√ n∑
i=2

a2i

√√√√ n∑
i=2

b2i

≤ λ ·
√
volX vol X̄ volY vol Ȳ

vol(G)
,

where vol X̄ = vol(V \X), the second last inequality follows by the Cauchy-Schwarz inequality,
and the last inequality follows by the fact that

n∑
i=1

a2i =

(
n∑

i=1

aif
⊺
i

)(
n∑

i=1

aifi

)
= ⟨χ⊺

XD
1/2, D1/2χX⟩ = volX,

and
n∑

i=2

a2i = volX − (volX)2

volG
= volX vol X̄/ volG ≤ volX.
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Remark 12. We remark that the proof above actually shows a stronger version of the expander
mixing lemma, i.e., it holds for any X, Y ⊂ V that∣∣∣∣|E(X, Y )| − volX · volY

volG

∣∣∣∣ ≤ λ ·
√
volX vol X̄ volY vol Ȳ

vol(G)
.

From the expander mixing lemma, we know that a small value of λ implies that G behaves
more like a random graph. Hence a natural question is to study a lower bound of λ. Alon
and Boppana showed that, for any constant ε > 0, every sufficiently large d-regular graph has
λ ≥ 2

√
d− 1/d− ε. We call a d-regular graph G Ramanujan if λ(G) ≤ 2

√
d− 1/d. For any

fixed constant d, constructing an infinite family of d-regular Ramanujan graphs is a major open
question in theoretical computer science.
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