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Homework 1
Solutions

Problem 1: Show that for any a ≥ 1 there exist distributions for which Markov’s inequality is tight
by showing the following:

• For each a = 2, 3, and 4 give a probability distribution p(x) for a nonnegative random variable x
for which

P [x ≥ a ] = E [x ]

a
.

• For arbitrary a ≥ 1 give a probability distribution for a nonnegative random variable x where

P [x ≥ a ] = E [x ]

a
.

Solution: For an arbitrary a ≥ 1 we consider the probability distribution

p(x) =

{
1
a if x = a,

1− 1
a if x = 0.

Then, it holds that
E [x ] = a ·P [x = a ] + 0 ·P [x = 0 ] = 1,

and hence
P [x ≥ a ] = P [x = a ] =

1

a
=

E [x ]

a
.

Problem 2: Show that for any c ≥ 1 there exist distributions for which Chebyshev’s inequality is
tight, in other words,

P [ |x−E [x ] | ≥ c ] = Var [x ]

c2
.

Solution: For an arbitrary c ≥ 1 we consider the following probability distribution

p(x) =


1
2c if x = c,

1− 1
c if x = 0,

1
2c if x = −c.

Then, it holds that

E [x ] = c · p(c) + 0 · p(0) + (−c) · p(−c) = 0,

E
[
x2
]
= c2 · p(c) + 0 · p(0) + (−c)2 · p(−c) = c,

Var [x ] = E
[
x2
]
−E [x ]2 = c.

Hence,

P [ |x−E [x ] | ≥ c ] = P [ |x| ≥ c ] = 1

c
=

Var [x ]

c2
.



Problem 3: Consider the probability density function p(x) = 0 for x < 1 and p(x) = c · 1
x4 for x ≥ 1.

• What should c be to make p a legal probability density function?

• Generate 100 random samples from this distribution. How close is the average of the samples to
the expected value of x?

Solution: Recall that p is a valid probability density function if

1. p(x) ≥ 0 ∀x ∈ R;

2.
∫∞
−∞ p(x)dx = 1.

Working with the second condition we have that∫ ∞
−∞

p(x) dx =

∫ ∞
1

c · 1
x4

dx = c · 1

−3x3

∣∣∣∣∞
1

=
c

3
,

and therefore the first condition holds when c = 3.

For the second part of the question we will use the Law of Large Numbers, i.e.,

P

[ ∣∣∣∣x1 + · · ·+ x100
100

−E [x ]

∣∣∣∣ ≥ ε ] ≤ Var [x ]

100ε2
.

We know that

E [x ] =

∫ ∞
−∞

x p(x) dx =

∫ ∞
1

3 · 1
x3

dx =
3

−2x2

∣∣∣∣∞
1

=
3

2
,

E
[
x2
]
=

∫ ∞
−∞

x2 p(x) dx =

∫ ∞
1

3 · 1
x2

dx =
3

−x

∣∣∣∣∞
1

= 3,

and

Var [x ] = E
[
x2
]
−E [x ]2 = 3−

(
3

2

)2

=
3

4
.

Therefore, it holds that

P

[ ∣∣∣∣x1 + · · ·+ x100
100

−E [x ]

∣∣∣∣ ≥ ε ] ≤ 3

400ε2
.

For example, if ε = 0.2, the probability that the mean of the 100 samples lies outside the interval
(1.3, 1.7) is not grater than 0.19.

Problem 4: Let G be a d-dimensional Gaussian with variance 1/2 in each direction, centred at the
origin. Derive the expected squared distance to the origin.

Solution: Suppose G = (g1, g2, . . . , gd) where each gi ∼ N (0, 1/2). Direct calculation gives us that

E
[
‖G− 0‖2

]
= E

[
d∑

i=1

g2i

]
=

d∑
i=1

E
[
g2i
]
=

d∑
i=1

(E
[
g2i
]
−E [ gi ]

2) =
d∑

i=1

Var [ gi ] =
d

2
.
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Problem 5: Let x1, . . . , xn be independent samples of a random variable x with mean µ and variance
σ2. Let

ms =
1

n

n∑
i=1

xi

be the sample mean. Suppose one estimates the variance using the sample mean rather than the true
mean, that is,

σ2s =
1

n

n∑
i=1

(xi −ms)
2.

Prove that
E
[
σ2s
]
=
n− 1

n
σ2

and thus one should have divided by n− 1 rather than n.

Solution: First of all, we will rewrite σ2s by

σ2s =
1

n

n∑
i=1

(xi −ms)
2

=
1

n

n∑
i=1

(x2i − 2xims +m2
s)

=
1

n

(
n∑

i=1

x2i

)
− 2ms

∑n
i=1 xi
n

+
1

n

n∑
i=1

m2
s

=
1

n

(
n∑

i=1

x2i

)
−m2

s.

Now, using the linearity of expectation we have

E
[
σ2s
]
=

1

n

(
n∑

i=1

E
[
x2i
])
−E

[
m2

s

]
,

where
E
[
x2i
]
= Var [xi ] +E [xi ]

2 = σ2 + µ2,

and

E
[
m2

s

]
= E

( 1

n

n∑
i=1

xi

)2


=
1

n2
E

( n∑
i=1

xi

)2


=
1

n2

Var

[
n∑

i=1

xi

]
+E

[
n∑

i=1

xi

]2
=

1

n2

 n∑
i=1

Var [xi ] +

(
n∑

i=1

E [xi ]

)2
 using that xi are independent

=
σ2

n
+ µ2.

Therefore we get

E
[
σ2s
]
=

1

n

(
n∑

i=1

σ2 + µ2

)
− σ2

n
− µ2 = n− 1

n
σ2.
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