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Solutions 2

Problem 1: Compute the right-singular vectors v;, the left-singular vectors u;, the singular values
o; and hence find the Singular value decomposition of
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Solution:  Throughout the solution we will make use of the following lemma.

Lemma 1. Let a and b be two real numbers satisfying a®> +b> = 1 and a > 0. The product ab is
V2

mazimised when a = b = .

Proof. Using the initial conditions we can rewrite a = v/1 — b2. Hence maximising the product ab
reduces to maximising the function f(z) = xv1—22. A point zp maximises f(z) if 9 > 0 and

f(xg) = 0. We have that
—a” 1 — 222
) = /1 — 22 + x? .
J@) = V-2t e =~

We conclude that x¢ = g which gives a = b = @ O

Z) such that ||v]| =1

and v maximises ||Av||. Without loss of generality we can also assume that a > 0. Firstly, note
that maximising ||Av|| is equivalent to maximising || Av||*. We also have that:

1. For finding the first right-singular vector vy, we look at any vector v = (

2
a+b
|Av||* = 3b I = (a+b)? + 9b* + 9a*.
3a

Since ||v|| = 1, we have that a® + b2 = 1. Therefore ||Av||* = 10(a2 + b?) + 2ab = 10 + 2ab.
We see that ||Av||? is maximised if and only if ab is maximised. Using Lemma (1| that happens

1
1 . - 1 . .
when a = b = Nt So the first right-singular vector vy = 7 ( 1) and the first singular value is

o1 = ||Avi|| = V/11. For the first left-singular vector u; we compute

!/
For the second right-singular vector vy, we look at vectors v = <Z,> such that |jv]| =1, v L vy

and v maximises || Av||. Without loss of generality we can assume a’ > 0. Since v L v; this implies
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that o’ +b" = 0. Solving a’* + b = 1 gives us that o' = 75 Hence vy = 7 (_1>. Moreover,
the second singular value is o9 = ||Avs|| = 3. The second left-singular vector ug is computed by
0
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Uy = —Avg = — | —1
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The singular value decomposition of A is
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2. Again, for finding v; we look at any vector v = <Z> such that ||v|| = 1 and v maximises || Av||.
Without loss of generality we can assume a > 0.
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| Av||? = = 4a® + 4> + (a + 3b)% + (3a + b)? = 14(a® + b?) + 12ab.

Using that ||v|| = 1 we have that ||Av||*> = 14 4 12ab which, by Lemma , is maximised for
1
a =b = -1 Therefore we have that v; = -1 ( and o1 = v/20. The first left-singular vector uq

V2 V2 \1
is given by
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A similar reasoning to the previous part tells us that ve = % (_ 1) and o9 = || Avs| = V8. We

also have that

1
Uy = — Avg =
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Hence, the singular value decomposition of A is
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Problem 2: Consider the matrix

1 L .
1. Run the power method starting from x = <1> for k = 3 steps. What does this give as estimates

for v1 and 017

2. What are the actual values of v;’s, 0;’s and u;’s? You might find it helpful to first compute the
eigenvalues and eigenvectors of B = ATA.

Solution:

1. Recall that the power method computes a sequence of vectors {z;} such that x; = Bx;_; for all
1 <i < k, where the matrix B = ATA. In our case we have that

1 2
p_(1 -1 1 -n\|-1 2] [ 0
_(2 2 -2 —2> 1 -2 _<o 16>
-1 -2

After £ = 3 runs of the power method, we obtain a vector

w6 )0 ()

The estimate for v; is given by

G T3 0.0039
T )~ \0.9998 )
Also, the estimate for oy is given by

51 = || Awi|| ~ 3.9992.

2. Since the matrix B is already in diagonal form, its eigenvaues are simply the entries on the
diagonal. Thus we have that Ay = 16 and Ay = 4. Recall that the eigenvalues of B are the squares
of the singular values of the matrix A, therefore o1 = 4 and o9 = 2. Moreover, we know that the

. . . . 0
right-singular vectors v; are the eigenvectors of B corresponding to A;. One has that v; = < 1)

1 .
and vy = <O> For the left-singular vectors u; we compute
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Problem 3: Let v € R” such that ||v|| = 1. Sample uniformly z € {—1,1}", and define S = (z,v).

Prove that " "
E[5] =3 o] —2) v <3
=1 =1

Solution:  We have that
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In the third line we used the linearity of the expectation. The equality in the fourth line comes from
the fact that under expectation, all products of z;’s vanish when at least one factor has odd power.
Finally the last inequality comes from the fact that we chose v to be a unit vector.

Problem 4: Let A € R™" be a symmetric and PSD matrix. Show that the power method can be
applied to approximately compute the smallest eigenvalue of A.

Solution:  Suppose A has eigenvalues A\; > Ay > .-+ > A, > 0, counting multiplicities. First, we
can run the power method to find a good approximation of the largest eigenvalue of A, say d is the
approximated largest eigenvalue of \;. Using this, we can upper bound A; by a constant, say 2d.
Consider the matrix B = 2D — A, where D is a diagonal matrix with each diagonal entry being equal
to d. Notice that this ensures that matrix B is a PSD matrix. We claim that for every eigenvalue \; of
A with corresponding eigenvector v;, 2d — A; is an eigenvalue of B. Indeed we have that

BUZ' = (2D — A)Ui = 2Dvi — A’UZ' = 2d’l)i — )\i'Uz‘ = (2d — )\z)’l)z

Also note that the smallest eigenvalue of A, i.e. A\, corresponds to the largest eigenvalue of B, which is
2d — \,,. Hence we can run the power method for B to get an estimate for 2d — \,, and subtract it from
d to get an estimate of \,.

Problem 5: Let u be a fixed vector. Show that maximising xTuuT(1 — x) subject to z; € {0,1} is
equivalent to partitioning the coordinates of u into two subsets where the sum of the elements in both
subsets are as equal as possible.



Solution:  Suppose that the vectors x and u are n-dimensional. Let f(z) = zTuuT(1 — x). We have
that

fx) = (Z wz“z) > u(l— )
=1 j=1
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2,7=1

= Z Z xi(l—xj)uiuj
0

;=1 jix;=

:<Z“z) >y

ir;=1 ;=0

Let a = () ;,,—1ui) and b = (Zj:szo uj>. Note that a +b = Y " ; u; = c for some constant ¢
since the vector u is fixed. Therefore, the problem of maximising f(x) subject to x, is equivalent to
maximising the product ab, subject to the constraint a + b = ¢. A similar argument as the one in
Lemma [l of Problem 1 can be used to show that ab is maximised for a = b. In our case a and b take
discrete values over the random sampling of x, hence f(z) is maximised when |a — b| is minimised. In
other words, when we can partition the entries of v into two sets such that the sum of entries in the
two sets is as equal as possible.



