
University of Edinburgh
INFR11156: Algorithmic Foundations of Data Science (2025)

Solutions 2

Problem 1: Compute the right-singular vectors vi, the left-singular vectors ui, the singular values
σi and hence find the Singular value decomposition of

1. A =

1 1
0 3
3 0

;

2. A =


0 2
2 0
1 3
3 1

.

Solution: Throughout the solution we will make use of the following lemma.

Lemma 1. Let a and b be two real numbers satisfying a2 + b2 = 1 and a ≥ 0. The product ab is
maximised when a = b =

√
2
2 .

Proof. Using the initial conditions we can rewrite a =
√
1− b2. Hence maximising the product ab

reduces to maximising the function f(x) = x
√
1− x2. A point x0 maximises f(x) if x0 ≥ 0 and

f ′(x0) = 0. We have that

f ′(x) =
√

1− x2 + −x2√
1− x2

=
1− 2x2√
1− x2

.

We conclude that x0 =
√
2
2 which gives a = b =

√
2
2 .

1. For finding the first right-singular vector v1, we look at any vector v =
(
a
b

)
such that ‖v‖ = 1

and v maximises ‖Av‖. Without loss of generality we can also assume that a ≥ 0. Firstly, note
that maximising ‖Av‖ is equivalent to maximising ‖Av‖2. We also have that:

‖Av‖2 =

∥∥∥∥∥∥
a+ b

3b
3a

∥∥∥∥∥∥
2

= (a+ b)2 + 9b2 + 9a2.

Since ‖v‖ = 1, we have that a2 + b2 = 1. Therefore ‖Av‖2 = 10(a2 + b2) + 2ab = 10 + 2ab.
We see that ‖Av‖2 is maximised if and only if ab is maximised. Using Lemma 1 that happens

when a = b = 1√
2
. So the first right-singular vector v1 = 1√

2

(
1
1

)
and the first singular value is

σ1 = ‖Av1‖ =
√
11. For the first left-singular vector u1 we compute

u1 =
1

σ1
Av1 =

1√
22

2
3
3

 .

For the second right-singular vector v2, we look at vectors v =

(
a′

b′

)
such that ‖v‖ = 1, v ⊥ v1

and v maximises ‖Av‖. Without loss of generality we can assume a′ ≥ 0. Since v ⊥ v1 this implies



that a′ + b′ = 0. Solving a′2 + b′2 = 1 gives us that a′ = 1√
2
. Hence v2 = 1√

2

(
1
−1

)
. Moreover,

the second singular value is σ2 = ‖Av2‖ = 3. The second left-singular vector u2 is computed by

u2 =
1

σ2
Av2 =

1√
2

 0
−1
1

 .

The singular value decomposition of A is

A = UDV T =


2√
22

0

3√
22

−1√
2

3√
22

1√
2


(√

11 0
0 3

)
1√
2

1√
2

1√
2

− 1√
2

 .

2. Again, for finding v1 we look at any vector v =
(
a
b

)
such that ‖v‖ = 1 and v maximises ‖Av‖.

Without loss of generality we can assume a ≥ 0.

‖Av‖2 =

∥∥∥∥∥∥∥∥


2b
2a

a+ 3b
3a+ 3b


∥∥∥∥∥∥∥∥
2

= 4a2 + 4b2 + (a+ 3b)2 + (3a+ b)2 = 14(a2 + b2) + 12ab.

Using that ‖v‖ = 1 we have that ‖Av‖2 = 14 + 12ab which, by Lemma 1, is maximised for

a = b = 1√
2
. Therefore we have that v1 = 1√

2

(
1
1

)
and σ1 =

√
20. The first left-singular vector u1

is given by

u1 =
1

σ1
Av1 =

1

2
√
10


2
2
4
4

 =
1√
10


1
1
2
2

 .

A similar reasoning to the previous part tells us that v2 = 1√
2

(
1
−1

)
and σ2 = ‖Av2‖ =

√
8. We

also have that

u2 =
1

σ2
Av2 =

1

4


−2
2
−2
2

 =
1

2


−1
1
−1
1

 .

Hence, the singular value decomposition of A is

A = UDV T =



1√
10

−1
2

1√
10

1
2

2√
10

−1
2

2√
10

1
2


(√

20 0

0
√
8

)
1√
2

1√
2

1√
2

− 1√
2

 .
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Problem 2: Consider the matrix

A =


1 2
−1 2
1 −2
−1 −2

 .

1. Run the power method starting from x =

(
1
1

)
for k = 3 steps. What does this give as estimates

for v1 and σ1?

2. What are the actual values of vi’s, σi’s and ui’s? You might find it helpful to first compute the
eigenvalues and eigenvectors of B = AᵀA.

Solution:

1. Recall that the power method computes a sequence of vectors {xi} such that xi = Bxi−1 for all
1 ≤ i ≤ k, where the matrix B = AᵀA. In our case we have that

B =

(
1 −1 1 −1
2 2 −2 −2

)
1 2
−1 2
1 −2
−1 −2

 =

(
4 0
0 16

)

After k = 3 runs of the power method, we obtain a vector

x3 = B3x =

(
4 0
0 16

)3(
1
1

)
=

(
64 0
0 4096

)(
1
1

)
=

(
64
4096

)
The estimate for v1 is given by

ṽ1 =
x3
‖x3‖

'
(
0.0039
0.9998

)
.

Also, the estimate for σ1 is given by

σ̃1 = ‖Aṽ1‖ ' 3.9992.

2. Since the matrix B is already in diagonal form, its eigenvaues are simply the entries on the
diagonal. Thus we have that λ1 = 16 and λ2 = 4. Recall that the eigenvalues of B are the squares
of the singular values of the matrix A, therefore σ1 = 4 and σ2 = 2. Moreover, we know that the

right-singular vectors vi are the eigenvectors of B corresponding to λi. One has that v1 =
(
0
1

)
and v2 =

(
1
0

)
. For the left-singular vectors ui we compute

u1 =
1

σ1
Av1 =

1

4


2
2
−2
−2

 =
1

2


1
1
−1
−1


and

u1 =
1

σ2
Av2 =

1

2


1
−1
1
−1
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Problem 3: Let v ∈ Rn such that ‖v‖ = 1. Sample uniformly x ∈ {−1, 1}n, and define S = 〈x, v〉.
Prove that

E
[
S4
]
= 3

n∑
i=1

v2i − 2
n∑

i=1

v4i ≤ 3.

Solution: We have that

E
[
S4
]
= E

( n∑
i=1

xivi

)4


= E

 n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

xixjxkx`vivjvkv`


=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

E [xixjxkx` ] vivjvkv`

=
n∑

i=1

E
[
x4i
]
v4i +

1

2

(
4

2

)∑
i 6=j

E
[
x2ix

2
j

]
v2i v

2
j

=

n∑
i=1

v4i + 3
∑
i 6=j

v2i v
2
j

= 3

(
n∑

i=1

v2i

) n∑
j=1

v2j

− 2

n∑
i=1

v4i

= 3 ‖v‖4 − 2

n∑
i=1

v4i

≤ 3.

In the third line we used the linearity of the expectation. The equality in the fourth line comes from
the fact that under expectation, all products of xi’s vanish when at least one factor has odd power.
Finally the last inequality comes from the fact that we chose v to be a unit vector.

Problem 4: Let A ∈ Rn×n be a symmetric and PSD matrix. Show that the power method can be
applied to approximately compute the smallest eigenvalue of A.

Solution: Suppose A has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, counting multiplicities. First, we
can run the power method to find a good approximation of the largest eigenvalue of A, say d is the
approximated largest eigenvalue of λ1. Using this, we can upper bound λ1 by a constant, say 2d.
Consider the matrix B = 2D −A, where D is a diagonal matrix with each diagonal entry being equal
to d. Notice that this ensures that matrix B is a PSD matrix. We claim that for every eigenvalue λi of
A with corresponding eigenvector vi, 2d− λi is an eigenvalue of B. Indeed we have that

Bvi = (2D −A)vi = 2Dvi −Avi = 2dvi − λivi = (2d− λi)vi.

Also note that the smallest eigenvalue of A, i.e. λn, corresponds to the largest eigenvalue of B, which is
2d− λn. Hence we can run the power method for B to get an estimate for 2d− λn and subtract it from
d to get an estimate of λn.

Problem 5: Let u be a fixed vector. Show that maximising xᵀuuᵀ(1− x) subject to xi ∈ {0, 1} is
equivalent to partitioning the coordinates of u into two subsets where the sum of the elements in both
subsets are as equal as possible.
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Solution: Suppose that the vectors x and u are n-dimensional. Let f(x) = xᵀuuᵀ(1− x). We have
that

f(x) =

(
n∑

i=1

xiui

) n∑
j=1

uj(1− xj)


=

n∑
i,j=1

xi(1− xj)uiuj

=
∑

i:xi=1

∑
j:xj=0

xi(1− xj)uiuj

=

( ∑
i:xi=1

ui

) ∑
j:xj=0

uj

 .

Let a =
(∑

i:xi=1 ui
)
and b =

(∑
j:xj=0 uj

)
. Note that a + b =

∑n
i=1 ui = c for some constant c

since the vector u is fixed. Therefore, the problem of maximising f(x) subject to x, is equivalent to
maximising the product ab, subject to the constraint a + b = c. A similar argument as the one in
Lemma 1 of Problem 1 can be used to show that ab is maximised for a = b. In our case a and b take
discrete values over the random sampling of x, hence f(x) is maximised when |a− b| is minimised. In
other words, when we can partition the entries of u into two sets such that the sum of entries in the
two sets is as equal as possible.
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