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Solution 3

Problem 1: Prove that the medium of the returned values from Θ(log(1/δ)) independent copies of
the BJKST algorithm gives an (ε, δ)-approximation of F0.

Solution: First, we will show that each instance of the algorithm outputs a good approximation of
F0, with constant probability. Let Xr,j be a sequence of indicator random variables such that Xr,j = 1
if and only if ρ(h(j)) ≥ r. Also define Yr :=

∑n
j=1Xr,j so that Yr denotes the number of items j that

reach level r. Smilarly to the analysis of the AMS algorithm, we have that

E(Yr) =
F0

2r
and V(Yr) ≤

F0

2r
.

Let z̄ be the final value of z at the end of the algorithm and let Z be the output of the algorithm.
It is easy to see that Z = Yz̄ · 2z̄. We further introduce a parameter s satisfying

ε2F0

10
≤ 2s ≤ ε2F0

5
.

Notice that such s always exists. Hence we have that

P (|Z − F0| > εF0) = P
(
|Yz̄ · 2z̄ − F0| > εF0

)
= P

(∣∣∣∣Yz̄ − F0

2z̄

∣∣∣∣ > εF0

2z̄

)
= P

(
|Yz̄ − E(Yz̄)| >

εF0

2z̄

)
=

logn∑
z=1

P
(
|Yz − E(Yz)| >

εF0

2z
∧ z̄ = z

)

=

s−1∑
z=1

P
(
|Yz − E(Yz)| >

εF0

2z
∧ z̄ = z

)
+

logn∑
z=s

P
(
|Yz − E(Yz)| >

εF0

2z
∧ z̄ = z

)

≤
s−1∑
z=1

P
(
|Yz − E(Yz)| >

εF0

2z

)
+

logn∑
z=s

P (z̄ = z)

=

s−1∑
z=1

P
(
|Yz − E(Yz)| >

εF0

2z

)
+ P (z̄ ≥ s)

By Chebyshev’s inequality we have that

P
(
|Yz − E(Yz)| >

εF0

2z

)
≤ V(Yz)(

εF0
2z

)2 ≤ 2z

ε2F0
.

Also by construction of the algorithm and Markov’s inequality, we know that

P (z̄ ≥ s) = P
(
Ys−1 >

100

ε2

)
≤ E(Ys−1) · ε

2

100
=

ε2 · F0

100 · 2s−1
.

Therefore we can conclude that

P (|Z − F0| > εF0) ≤
s−1∑
z=1

2z

ε2F0
+

ε2 · F0

100 · 2s−1

≤ 2s

ε2F0
+

ε2 · F0

100 · 2s−1

≤ 2/5,



where the last inequality holds by the choice of s. We can improve this δ by running Θ(log(1/δ))
instances of the algorithm and returning the median of the returned values. Thus BJKST gives an
(ε, δ)-approximation for F0.

Problem 2: Let Y1, . . . , Yn be independent random variables with P[Yi = 0] = P[Yi = 1] = 1/2. Let
Y :=

∑n
i=1 Yi and µ := E[Y ] = n/2. Apply the uniform Chernoff Bound to prove it holds for any

0 < λ < µ that
P[Y ≥ µ+ λ] ≤ e−2λ2/n.

Solution: Consider the substitution Xi = 2(Yi − E[Yi]) and let X =
∑n

i=1Xi. It is easy to see that
P[Xi = −1] = [Xi = 1] = 1/2. We have that

X =
n∑
i=1

Xi =
n∑
i=1

2(Yi − E[Yi]) = 2
n∑
i=1

Yi − 2E

[
n∑
i=1

Yi

]
= 2Y − 2E[Y ] = 2Y − 2µ.

Therefore we see that Y = 1
2X + µ and hence

P[Y ≥ µ+ λ] = P
[

1

2
X + µ ≥ µ+ λ

]
= P[X ≥ 2λ] ≤ e−(2λ)2/2n = e−2λ2/n,

where the inequality comes from applying the Chernoff Bound to the random variable X.

Problem 3: For any undirected graph G = (V,E) with n vertices, we say three vertices u, v, w form a
triangle if there are three edges connecting u, v, w respectively. This problem is to analyse a streaming
algorithm for approximately computing the number of triangles in an undirected graph G. To describe
the proposed algorithm, let H be a family of 12-wise independent hash functions, where every h ∈ H is
of the form h : V → {−1, 1}. Let Z be our estimator, which is set to be 0 initially. The algorithm is
described as follows:

Algorithm 1 Approximate the number of triangles in G
1: Pick a function h uniformly at random from H;
2: Z ← 0;
3: while an edge {u, v} arrives do
4: Z ← Z + h(u) · h(v);
5: end while
6: Return Z3/6.

You need to prove that the returned value Z3/6 is an unbiased estimator of the number of triangles in
G, i.e.,

E
(
Z3

6

)
= number of triangles in G.

Hence, the number of triangles can be approximately counted by running Algorithm 1 above multiple
times in parallel and returning the medium of the returned values.

Solution: We have that

E
[
Z3
]

= E

 ∑
e={u,v}

h(u)h(v)

3 
= E

 ∑
e1={u1,v1}

∑
e2={u2,v2}

∑
e3={u3,v3}

3∏
i=1

h(ui)h(vi)


=

∑
e1={u1,v1}

∑
e2={u2,v2}

∑
e3={u3,v3}

E

[
3∏
i=1

h(ui)h(vi)

]
,
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where the last equality comes from the linearity of the expectation. We will now argue that the last
formulation is exactly 6 times the number of triangles in G. Under expectation, only the terms with
products of even powers of h(ui) and h(vi) survive. In a combination of three edges ei = {ui, vi}, every
vertex ui or vi is connected to at most three other vertices. Moreover, the power of each h(xi) is the
number of times xi appears in the combination. We see that only the terms where each vertex appears
exactly twice survive, which can only happen if the three edges form a cycle. Since every triangle is
counted 6 times (once for every permutation of its edges) wee see that E

[
Z3
]
equals to 6 times the

number of triangles in G.

Problem 4: We are given two independent streams of elements from {1, . . . , n}, and we only consider
the cash register model. Let A[1, . . . , n] and B[1, . . . , n] be the number of occurrences of item i in two
streams, respectively. Design a streaming algorithm to estimate X =

∑n
i=1A[i]B[i] with additive error

ε · ‖A‖1 · ‖B‖1. You need to analyse the space complexity of your proposed algorithm, and analyse the
correctness of your algorithm.

Solution: The algorithm follows the framework of the Count-Min sketch. We will make use of two
tables C and D, each of size d × w, where d = dlog (1/δ)e and w = e/ε. The i-th row of each table
corresponds to a hash function hi : [n]→ [w] chosen from a family of unievrsal hash functions. The two
tables support two operations Insert(x) and Query as follows:

Algorithm 2 Insert(x)
1: Result: Inserts a new element x from the stream
2: for i = 1, d do
3: Compute hi(x)
4: if x is from the first stream then
5: C[i, hi(x)]← C[i, hi(x)] + 1
6: else
7: D[i, hi(x)]← D[i, hi(x)] + 1
8: end if
9: end for

Algorithm 3 Querry
1: Result: Provides the answer to the querry X =

∑n
i=1A[i]B[i]

2: Return X ′ := min1≤i≤dC[i]D[i], where C[i]D[i] =
∑w

j=1C[i, j]D[i, j]

By construction, for any x ∈ [n] and any row i, x will be mapped to the same column hi(x) in
the two tables. Thus, when computing the dot product C[i]D[i], we are guaranteed to have the sum
A[x]B[x]. By taking the minimum over all i’s and taking into account the values in the two vectors are
nonnegative, it follows that X ′ ≥ X.

For the other direction, we will prove that with constant probability 1 − δ we have that X ′ ≤
X + ε ‖A‖1 ‖B‖1. Fix a row i and suppose C[i]D[i] =

∑n
i=1A[i]B[i] + Zi, where Zi is the excess

obtained from the dot product. Such an excess can occur if and only if we encounter collisions of the
hash function. Namely, whenever two distinct x, y ∈ [n] are such that hi(x) = hi(y) = z, computing
C[i, z]D[i, z] yields an excess of A[x]B[y] +A[y]B[x]. Hence, we conclude that

Zi =
∑
x 6=y

hi(x)=hi(y)

A[x]B[y].

Since we used universal hash functions, it follows that ∀x 6= y,

P[hi(x) = hi(y)] ≤ 1

w
=
ε

e
.
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This, in turn, implies that

E [Zi ] =
∑
x 6=y

P[hi(x) = hi(y)]A[x]B[y] ≤ ε

e
‖A‖1 ‖B‖1 .

To complete the proof, observe that

P
[
X ′ > X + ε ‖A‖1 ‖B‖1

]
= P[∀i : Zi > ε ‖A‖1 ‖B‖1] ≤ P [∀i : Zi > eE [Zi ] ] ≤ e−d ≤ δ,

where the last inequality is obtained by applying Markov’s inequality. The space used by the algorithm
is essentially dominated by the two tables used to store the number of appearances of the elements in
the two streams, which is O(wd) = O

(
1
ε log(1/δ)

)
.

4


