
Spectral clustering
He Sun



Recall: normalised graph Laplacian

Let G = (V,E,w) be an undirected and weighted graph with n vertices and
weight function w : E → R≥0. Let du =

∑
u∼v w(u, v).

The normalised Laplacian matrix of G is defined by

L , I−D−1/2 ·AD−1/2,

where A is the adjacency matrix of G.

NORMALISED LAPLACIAN MATRIX

Example:

LG =


1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1


Matrix L has eigenvalues 0 = λ1 ≤ . . . ≤ λn with corresponding eigenvectors

f1, . . . , fn.

AFDS He Sun 2



Recall: normalised graph Laplacian

Let G = (V,E,w) be an undirected and weighted graph with n vertices and
weight function w : E → R≥0. Let du =

∑
u∼v w(u, v).

The normalised Laplacian matrix of G is defined by

L , I−D−1/2 ·AD−1/2,

where A is the adjacency matrix of G.

NORMALISED LAPLACIAN MATRIX

Example:

LG =


1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1


Matrix L has eigenvalues 0 = λ1 ≤ . . . ≤ λn with corresponding eigenvectors

f1, . . . , fn.

AFDS He Sun 2



Recall: normalised graph Laplacian

Let G = (V,E,w) be an undirected and weighted graph with n vertices and
weight function w : E → R≥0. Let du =

∑
u∼v w(u, v).

The normalised Laplacian matrix of G is defined by

L , I−D−1/2 ·AD−1/2,

where A is the adjacency matrix of G.

NORMALISED LAPLACIAN MATRIX

Example:

LG =


1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1



Matrix L has eigenvalues 0 = λ1 ≤ . . . ≤ λn with corresponding eigenvectors

f1, . . . , fn.

AFDS He Sun 2



Recall: normalised graph Laplacian

Let G = (V,E,w) be an undirected and weighted graph with n vertices and
weight function w : E → R≥0. Let du =

∑
u∼v w(u, v).

The normalised Laplacian matrix of G is defined by

L , I−D−1/2 ·AD−1/2,

where A is the adjacency matrix of G.

NORMALISED LAPLACIAN MATRIX

Example:

LG =


1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1


Matrix L has eigenvalues 0 = λ1 ≤ . . . ≤ λn with corresponding eigenvectors

f1, . . . , fn.

AFDS He Sun 2



Recall: graph conductance

The conductance of a set S is defined by

φG(S) ,
w(S, V \ S)

vol(S)
,

where

w(S, V \ S) ,
∑

u∈S,v∈V \S,u∼v

w(u, v)

and vol(S) ,
∑

u∈S du.

The conductance of a graph G is defined by

φG , min
S:vol(S)≤vol(V )/2

φG(S).

λ2

2
≤ φG ≤

√
2λ2.

Cheeger’s Inequality
φG(S) =

2
4·6 = 1

12

AFDS He Sun 3



Recall: graph conductance

The conductance of a set S is defined by

φG(S) ,
w(S, V \ S)

vol(S)
,

where

w(S, V \ S) ,
∑

u∈S,v∈V \S,u∼v

w(u, v)

and vol(S) ,
∑

u∈S du.

The conductance of a graph G is defined by

φG , min
S:vol(S)≤vol(V )/2

φG(S).

λ2

2
≤ φG ≤

√
2λ2.

Cheeger’s Inequality

φG(S) =
2
4·6 = 1

12

AFDS He Sun 3



Recall: graph conductance

The conductance of a set S is defined by

φG(S) ,
w(S, V \ S)

vol(S)
,

where

w(S, V \ S) ,
∑

u∈S,v∈V \S,u∼v

w(u, v)

and vol(S) ,
∑

u∈S du.

The conductance of a graph G is defined by

φG , min
S:vol(S)≤vol(V )/2

φG(S).

λ2

2
≤ φG ≤

√
2λ2.

Cheeger’s Inequality

φG(S) =
2
4·6 = 1

12

AFDS He Sun 3



Recall: graph conductance

The conductance of a set S is defined by

φG(S) ,
w(S, V \ S)

vol(S)
,

where

w(S, V \ S) ,
∑

u∈S,v∈V \S,u∼v

w(u, v)

and vol(S) ,
∑

u∈S du.

The conductance of a graph G is defined by

φG , min
S:vol(S)≤vol(V )/2

φG(S).

λ2

2
≤ φG ≤

√
2λ2.

Cheeger’s Inequality
φG(S) =

2
4·6 = 1

12

AFDS He Sun 3



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1



1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 5

1

3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2

5

1

3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2

5

1 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4

7

2

5

1 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4

7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4

7

2 51 3

8

6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8

6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

1

4

3

7

52

8 6
Sweep: 1

Conductance: 1

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

1

4

3

7

52

8 6
Sweep: 2

Conductance: 0.666

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

1

4

3

7

52

8 6
Sweep: 3

Conductance: 0.333

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

1

4

3

7

52

8 6
Sweep: 4

Conductance: 0.166

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

1

4

3

7

2 5

8 6
Sweep: 5

Conductance: 0.333

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

1

4

3

7

2

8

5

6
Sweep: 6

Conductance: 0.666

AFDS He Sun 4



Illustration of the graph partitioning algorithm

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


L =



1 0 − 1
3
− 1

3
0 0 − 1

3
0

0 1 0 0 − 1
3
− 1

3
− 1

3
0

− 1
3

0 1 − 1
3

0 0 0 − 1
3

− 1
3

0 − 1
3

1 0 0 − 1
3

0
0 − 1

3
0 0 1 − 1

3
0 − 1

3

0 − 1
3

0 0 − 1
3

1 0 − 1
3

− 1
3
− 1

3
0 − 1

3
0 0 1 0

0 0 − 1
3

0 − 1
3
− 1

3
0 1


1

2
3

4

5

6
7

8

λ2 =
√
5/3 ≈ 0.75

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)ᵀ

4 7

2 51 3

8 6

x−0.425 −0.263 0 +0.263 +0.425

1

4

3

7

2

8

5

6
Sweep: 7

Conductance: 1

AFDS He Sun 4



Illustration of the graph partition on a large graph

AFDS He Sun 5



Illustration continues: the second eigenvector

AFDS He Sun 6



Illustration continues: vertices and edges after the embedding

AFDS He Sun 7



From graph partitioning to graph clustering

Clustering is the task of dividing objects in groups (clusters) so that similar objects
are grouped together and dissimilar objects are separated in different groups.

Numerous applications in image segmentation, community detection,
bioinformatics, network analysis, among many others

AFDS He Sun 8



On the hardness of clustering

One basic learning task in machine learning
For many applications training sets are
unavailable

The problem is inherently difficult to be
formalised

There’s no “ground truth”

A cluster structure can be defined in many
different ways

“Impossibility theorem for clustering” (Kleinberg,
NIPS ’13)

Most formalisations are actually NP-hard

However,

We have algorithms that “work in practice”

The more well-clustered the data, the better the quality of the clustering
produced

AFDS He Sun 9



On the hardness of clustering

One basic learning task in machine learning
For many applications training sets are
unavailable

The problem is inherently difficult to be
formalised

There’s no “ground truth”

A cluster structure can be defined in many
different ways

“Impossibility theorem for clustering” (Kleinberg,
NIPS ’13)

Most formalisations are actually NP-hard

However,

We have algorithms that “work in practice”

The more well-clustered the data, the better the quality of the clustering
produced

AFDS He Sun 9



Graph clustering

Partition the graph into clusters so that vertices in the same cluster have, on av-
erage, more connections among each other than with vertices in other clusters.

AFDS He Sun 10



Graph clustering via eigenvectors

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

Let S1, . . . , Sk be G’s connected components.

For any 1 ≤ i ≤ k let

χi(v) =

{√
dv if v ∈ Si,

0 otherwise.

It holds that {f1, . . . , fk} = {χ1, . . . , χk}, i.e.,
the k eigenvectors can be applied to find k
connected components.

This situation can be informally viewed as, if λk/λk+1 = 0, the structure of k
clusters is completed encoded in the bottom k eigenvectors.

AFDS He Sun 11



Graph clustering via eigenvectors

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

Let S1, . . . , Sk be G’s connected components.

For any 1 ≤ i ≤ k let

χi(v) =

{√
dv if v ∈ Si,

0 otherwise.

It holds that {f1, . . . , fk} = {χ1, . . . , χk}, i.e.,
the k eigenvectors can be applied to find k
connected components.

This situation can be informally viewed as, if λk/λk+1 = 0, the structure of k
clusters is completed encoded in the bottom k eigenvectors.

AFDS He Sun 11



Graph clustering via eigenvectors

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

Let S1, . . . , Sk be G’s connected components.
For any 1 ≤ i ≤ k let

χi(v) =

{√
dv if v ∈ Si,

0 otherwise.

It holds that {f1, . . . , fk} = {χ1, . . . , χk}, i.e.,
the k eigenvectors can be applied to find k
connected components.

This situation can be informally viewed as, if λk/λk+1 = 0, the structure of k
clusters is completed encoded in the bottom k eigenvectors.

AFDS He Sun 11



Graph clustering via eigenvectors

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

Let S1, . . . , Sk be G’s connected components.
For any 1 ≤ i ≤ k let

χi(v) =

{√
dv if v ∈ Si,

0 otherwise.

It holds that {f1, . . . , fk} = {χ1, . . . , χk}, i.e.,
the k eigenvectors can be applied to find k
connected components.

This situation can be informally viewed as, if λk/λk+1 = 0, the structure of k
clusters is completed encoded in the bottom k eigenvectors.

AFDS He Sun 11



Graph clustering via eigenvectors

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

Let S1, . . . , Sk be G’s connected components.
For any 1 ≤ i ≤ k let

χi(v) =

{√
dv if v ∈ Si,

0 otherwise.

It holds that {f1, . . . , fk} = {χ1, . . . , χk}, i.e.,
the k eigenvectors can be applied to find k
connected components.

This situation can be informally viewed as, if λk/λk+1 = 0, the structure of k
clusters is completed encoded in the bottom k eigenvectors.

AFDS He Sun 11



Graph clustering via eigenvectors (cont.)

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

As long as not too many edges between different clusters are added, the k
eigenvectors do not change too much.

DAVIS-KAHAN THEOREM (1970, VERY INFORMAL STATEMENT IN OUR SETTING)

Chandler Davis

(mathematician, writer, politician)

William Kahan

(mathematician, received Turing Award in ’89)

As long as λk/λk+1 is small, the k eigenvectors can be used to find k clusters.

AFDS He Sun 12



Graph clustering via eigenvectors (cont.)

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

As long as not too many edges between different clusters are added, the k
eigenvectors do not change too much.

DAVIS-KAHAN THEOREM (1970, VERY INFORMAL STATEMENT IN OUR SETTING)

Chandler Davis

(mathematician, writer, politician)

William Kahan

(mathematician, received Turing Award in ’89)

As long as λk/λk+1 is small, the k eigenvectors can be used to find k clusters.

AFDS He Sun 12



Graph clustering via eigenvectors (cont.)

Graph G has exactly k connected components iff λk = 0 and λk+1 > 0.

LEMMA (PROBLEM 1 OF HOMEWORK 5)

As long as not too many edges between different clusters are added, the k
eigenvectors do not change too much.

DAVIS-KAHAN THEOREM (1970, VERY INFORMAL STATEMENT IN OUR SETTING)

Chandler Davis

(mathematician, writer, politician)

William Kahan

(mathematician, received Turing Award in ’89)

As long as λk/λk+1 is small, the k eigenvectors can be used to find k clusters.

AFDS He Sun 12



Spectral clustering

Embed vertex u into F (u) =(
1/
√

du
) (

f1(u), . . . , fk(u)
)

R3

Apply a k-means algorithm Partition V (G) into k clusters

Input: Set of n points x1, . . . , xn, where xi ∈ Rd, and
parameter k.

Goal: Assign the n points to k clusters such that total
distance

∑k
i=1

∑
x∈Si

‖x− ci‖2 is minimised, where ci
is the centre of cluster Si.

k-means clustering

AFDS He Sun 13



Spectral clustering

Embed vertex u into F (u) =(
1/
√

du
) (

f1(u), . . . , fk(u)
)

R3

Apply a k-means algorithm

Partition V (G) into k clusters

Input: Set of n points x1, . . . , xn, where xi ∈ Rd, and
parameter k.

Goal: Assign the n points to k clusters such that total
distance

∑k
i=1

∑
x∈Si

‖x− ci‖2 is minimised, where ci
is the centre of cluster Si.

k-means clustering

AFDS He Sun 13



Spectral clustering

Embed vertex u into F (u) =(
1/
√

du
) (

f1(u), . . . , fk(u)
)

R3

Apply a k-means algorithm Partition V (G) into k clusters

Input: Set of n points x1, . . . , xn, where xi ∈ Rd, and
parameter k.

Goal: Assign the n points to k clusters such that total
distance

∑k
i=1

∑
x∈Si

‖x− ci‖2 is minimised, where ci
is the centre of cluster Si.

k-means clustering

AFDS He Sun 13



Practical consideration: choosing the right value of k

The k-way expansion constant is defined by

ρ(k) = min
partition A1,...,Ak

max
1≤i≤k

φG(Ai).

λk

2
≤ ρ(k) ≤ O(k3)

√
λk.

Higher-Order Cheeger’s Inequality

A large gap between λk+1 and λk implies that

existence of k clusters, each of which has low conductance ≤ ρ(k).
any (k + 1)-way partition contains a set with conductance at least λk+1/2.

Graph G has exactly k clusters.

Example: Assume the eigenvalues are 0, 0.20, 0.22, 0.5, 0.55, . . ., then k = 3.

AFDS He Sun 14



Practical consideration: choosing the right value of k

The k-way expansion constant is defined by

ρ(k) = min
partition A1,...,Ak

max
1≤i≤k

φG(Ai).

λk

2
≤ ρ(k) ≤ O(k3)

√
λk.

Higher-Order Cheeger’s Inequality

A large gap between λk+1 and λk implies that

existence of k clusters, each of which has low conductance ≤ ρ(k).
any (k + 1)-way partition contains a set with conductance at least λk+1/2.

Graph G has exactly k clusters.

Example: Assume the eigenvalues are 0, 0.20, 0.22, 0.5, 0.55, . . ., then k = 3.

AFDS He Sun 14



Practical consideration: choosing the right value of k

The k-way expansion constant is defined by

ρ(k) = min
partition A1,...,Ak

max
1≤i≤k

φG(Ai).

λk

2
≤ ρ(k) ≤ O(k3)

√
λk.

Higher-Order Cheeger’s Inequality

A large gap between λk+1 and λk implies that

existence of k clusters, each of which has low conductance ≤ ρ(k).

any (k + 1)-way partition contains a set with conductance at least λk+1/2.

Graph G has exactly k clusters.

Example: Assume the eigenvalues are 0, 0.20, 0.22, 0.5, 0.55, . . ., then k = 3.

AFDS He Sun 14



Practical consideration: choosing the right value of k

The k-way expansion constant is defined by

ρ(k) = min
partition A1,...,Ak

max
1≤i≤k

φG(Ai).

λk

2
≤ ρ(k) ≤ O(k3)

√
λk.

Higher-Order Cheeger’s Inequality

A large gap between λk+1 and λk implies that

existence of k clusters, each of which has low conductance ≤ ρ(k).
any (k + 1)-way partition contains a set with conductance at least λk+1/2.

Graph G has exactly k clusters.

Example: Assume the eigenvalues are 0, 0.20, 0.22, 0.5, 0.55, . . ., then k = 3.

AFDS He Sun 14



Practical consideration: choosing the right value of k

The k-way expansion constant is defined by

ρ(k) = min
partition A1,...,Ak

max
1≤i≤k

φG(Ai).

λk

2
≤ ρ(k) ≤ O(k3)

√
λk.

Higher-Order Cheeger’s Inequality

A large gap between λk+1 and λk implies that

existence of k clusters, each of which has low conductance ≤ ρ(k).
any (k + 1)-way partition contains a set with conductance at least λk+1/2.

Graph G has exactly k clusters.

Example: Assume the eigenvalues are 0, 0.20, 0.22, 0.5, 0.55, . . ., then k = 3.

AFDS He Sun 14



Practical consideration: choosing the right value of k

The k-way expansion constant is defined by

ρ(k) = min
partition A1,...,Ak

max
1≤i≤k

φG(Ai).

λk

2
≤ ρ(k) ≤ O(k3)

√
λk.

Higher-Order Cheeger’s Inequality

A large gap between λk+1 and λk implies that

existence of k clusters, each of which has low conductance ≤ ρ(k).
any (k + 1)-way partition contains a set with conductance at least λk+1/2.

Graph G has exactly k clusters.

Example: Assume the eigenvalues are 0, 0.20, 0.22, 0.5, 0.55, . . ., then k = 3.

AFDS He Sun 14



Practical consideration: building the graph from dataset

Given the set X of points x1, . . . , xn, where xi ∈ Rd, the similarity graph G =
(V,E,w) of X is constructed as follows:

Every point xi ∈ X corresponds to a vertex called vi ∈ V .

Any pair of vertices vi and vj are connected with the weight

w(vi, vj) = exp

(
−
‖xi − xj‖2

2σ2

)
.

The choice of σ depends on applications. Usually σ ∈ [0.05, 10].

CONSTRUCTION OF A SIMILARITY GRAPH

Example: Set σ = 0.1, and only edges with weight ≥ 0.01 shown.

original graph similarity graph

AFDS He Sun 15



Practical consideration: building the graph from dataset

Given the set X of points x1, . . . , xn, where xi ∈ Rd, the similarity graph G =
(V,E,w) of X is constructed as follows:

Every point xi ∈ X corresponds to a vertex called vi ∈ V .

Any pair of vertices vi and vj are connected with the weight

w(vi, vj) = exp

(
−
‖xi − xj‖2

2σ2

)
.

The choice of σ depends on applications. Usually σ ∈ [0.05, 10].

CONSTRUCTION OF A SIMILARITY GRAPH

Example: Set σ = 0.1, and only edges with weight ≥ 0.01 shown.

original graph similarity graph

AFDS He Sun 15



Practical consideration: building the graph from dataset

Given the set X of points x1, . . . , xn, where xi ∈ Rd, the similarity graph G =
(V,E,w) of X is constructed as follows:

Every point xi ∈ X corresponds to a vertex called vi ∈ V .

Any pair of vertices vi and vj are connected with the weight

w(vi, vj) = exp

(
−
‖xi − xj‖2

2σ2

)
.

The choice of σ depends on applications. Usually σ ∈ [0.05, 10].

CONSTRUCTION OF A SIMILARITY GRAPH

Example: Set σ = 0.1, and only edges with weight ≥ 0.01 shown.

original graph similarity graph

AFDS He Sun 15



Practical consideration: building the graph from dataset

Given the set X of points x1, . . . , xn, where xi ∈ Rd, the similarity graph G =
(V,E,w) of X is constructed as follows:

Every point xi ∈ X corresponds to a vertex called vi ∈ V .

Any pair of vertices vi and vj are connected with the weight

w(vi, vj) = exp

(
−
‖xi − xj‖2

2σ2

)
.

The choice of σ depends on applications. Usually σ ∈ [0.05, 10].

CONSTRUCTION OF A SIMILARITY GRAPH

Example: Set σ = 0.1, and only edges with weight ≥ 0.01 shown.

original graph similarity graph

AFDS He Sun 15



Practical consideration: building the graph from dataset

Given the set X of points x1, . . . , xn, where xi ∈ Rd, the similarity graph G =
(V,E,w) of X is constructed as follows:

Every point xi ∈ X corresponds to a vertex called vi ∈ V .

Any pair of vertices vi and vj are connected with the weight

w(vi, vj) = exp

(
−
‖xi − xj‖2

2σ2

)
.

The choice of σ depends on applications. Usually σ ∈ [0.05, 10].

CONSTRUCTION OF A SIMILARITY GRAPH

Example: Set σ = 0.1, and only edges with weight ≥ 0.01 shown.

original graph similarity graph

AFDS He Sun 15



Application of spectral clustering in image segmentation

Every pixel p is characterised by its position in the image and its RGB
value, hence every pixel p corresponds to xp = (x, y, r, g, b).

Construct a similarity graph.

Apply spectral clustering.

Original image

Output (σ = 10)

AFDS He Sun 16



Application of spectral clustering in image segmentation

Every pixel p is characterised by its position in the image and its RGB
value, hence every pixel p corresponds to xp = (x, y, r, g, b).

Construct a similarity graph.

Apply spectral clustering.

Original image Output (σ = 10)

AFDS He Sun 16



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:
A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:
A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:
A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:
A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:
A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:

A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:
A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17



Concluding remarks

Spectral clustering is one of the most commonly used clustering algorithms in
data science.

It’s easy to describe, and easy to implement. Many spectral clustering packages
are available.

Spectral clustering was first proposed in the literature around early 90s, and
has been extensively studied since then.

Why spectral clustering works in practice can be informally explained by the
Davis-Kahan Theorem, one celebrated result in matrix perturbation theory
developed in 1970.

A theoretical and quantitative analysis on the performance of spectral clustering is
shown very recently (Peng, Sun, Zanetti, SICOMP 2017).

Several interesting questions remain open:
A better way to construct a similarity graph?

An easier way to determine the number of clusters?

AFDS He Sun 17


