
Week 2 lab: basic UNIX tools

Author: Sharon Goldwater, Ida Szubert, Henry S. Thompson
Date: 2014-09-01, updated 2015-09-15, 2016-09-15, 2017-09-15,

2018-08-20, 2018-09-18, 2019-09-05, 2022-09-22
Copyright: This work is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License1:
You may re-use, redistribute, or modify this work for non-
commercial purposes provided you retain attribution to any
previous author(s).

Preamble: how to do the labs for this course
This course has four 1.5-hour lab sessions where you will work through instructions
and questions like the ones below.

We strongly recommend that you do this lab and other labs in person during your
timetabled session, so you can work with another student and get help from demon-
strators. However, if you are not able to attend the lab, you can complete it remotely,
following instructions in the Preliminaries section below. In this case, we would advise
you to seek a partner to work with, perhaps via piazza.

In the lab, you should work with a partner, sharing a single keyboard and screen.
This will help you meet other students and learn more, since your partner may have
questions or comments you hadn’t thought of, and you’ll learn to communicate about
course concepts, which is important for your understanding (and for the exam!)

For this to work well, each person should ensure that both they and their partner
understand what is going on. Pay attention to what your partner is doing and discuss
what’s going on. That means:

• If you know the answer and your partner doesn’t, don’t just type it in and move
on to the next question---explain what you have done and why. This helps your
partner learn and improves your own understanding. Ask if your partner is satis-
fied with your explanation. Can you think of other examples to help your partner
understand? Explaining technical concepts to other people is an important skill,
and this will help you practice it.

• If your partner knows the answer and you don’t, don’t let them move on until
you understand too. Don’t let them dictate what you should type if you don’t

1http://creativecommons.org/licenses/by-nc/4.0/.
2http://computing.help.inf.ed.ac.uk/new-taught-students
3https://www.learn.ed.ac.uk/
4http://computing.help.inf.ed.ac.uk/remote-desktop
5https://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf

1

http://creativecommons.org/licenses/by-nc/4.0/.
http://creativecommons.org/licenses/by-nc/4.0/.
http://creativecommons.org/licenses/by-nc/4.0/.
http://computing.help.inf.ed.ac.uk/new-taught-students
https://www.learn.ed.ac.uk/
http://computing.help.inf.ed.ac.uk/remote-desktop
https://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf

understand why. Do ask questions, and tell your partner if their explanation
makes sense or not. Remember, just because they think they know the answer
doesn’t necessarily mean they are right! If it doesn’t make sense to you, they
need to work harder at explaining, and maybe discover that they are wrong!

• If neither of you knows the answer, ask one of the demonstrators in the lab, and
we can try to help you. However, don’t expect the demonstrator to simply tell
you the answer. They may instead ask questions or suggest ideas to help you find
the answer together with your partner.

• If one person is much more familiar with Python than the other, try putting the
less experienced person at the keyboard or at least switching frequently, so they
will get more practice with basic coding skills.

Most of the labs should not take you more than about 90 minutes to complete,
although this one might take 2 hours for some students, including the material in the
Preliminaries section.

NOTE: This week’s lab has a lot to read. Future labs will have less reading and
more thinking/coding, but you need to read through some basics first.

Preliminaries: to do before the first lab session
Please do the following before arriving at the first lab session.

First, make sure you have your DICE account. All students on an Informatics
degree should already have an account. If you are on a degree in another school, you
will automatically get a DICE account once you have registered for this class, so please
register as soon as possible and then work through this lab.

If you haven’t already, please read the School’s basic computing information for
new taught students2.

Next, complete the "Introduction to DICE for Undergraduate Students" course on
Learn:

1. Lot into the main Learn page3, and click on ’Course Catalog’ in the upper right.

2. Search for "Introduction to DICE for Undergraduate Students", and click ’go’.

3. Then hover over the course ID, click on the ’v’ shape, and choose ’Enrol’.

4. See below for which sections of the intro course to read.

In the intro course:

• If you are new to Linux, start by reading just the text of each section except
the last (i.e., don’t do the exercise yet), and don’t follow the links to additional
information (which will probably be too overwhelming for now). You can go
back to those at a later time if you need to.

• Those familiar with Linux may wish to follow some of the links to find out more
detail about our setup in Informatics.

2

http://computing.help.inf.ed.ac.uk/new-taught-students
http://computing.help.inf.ed.ac.uk/new-taught-students
https://www.learn.ed.ac.uk/

If you are not able to attend your timetabled lab session, you can do the lab re-
motely on a DICE computer by following these instructions to set up the DICE Remote
Desktop Service4. This will allow you to open a window on your own machine that is
logged in to DICE and displays what you would see if you were sitting at one of our
lab machines.

The first time you log in to DICE, please complete the "Dice Introductory Exercise"
from the introductory course on Learn. (Experienced Linux users can skim it.)

The rest of the lab assumes you have basic familiarity with DICE, and that you
have completed the Learn module.

Goals and motivation of this lab
This lab aims to:

• familiarize you with basic command line tools in the UNIX operating system.

• give you a first taste of working with text data.

What is UNIX?
This operating system is commonly used by computing researchers and program-

mers; in Informatics we use a version called Scientific Linux, which is installed on all
of the student lab machines and which you will be using for the practical labs in this
course. (The UNIX tools described here are also available in Apple’s OS X, and in
Windows by installing additional software such as Cygwin.)

UNIX commands can be a bit confusing at first but are powerful tools for manipu-
lating files and data, including exploratory data analysis. This lab will introduce some
basic UNIX commands for exploring and processing files. You can do a lot of useful
stuff with just a few commands, and we hope you’ll keep using the skills from this lab
for the rest of the semester and in your other courses.

But I already know UNIX!
This course is taken by students with many different backgrounds. If you are al-

ready familiar with UNIX, please skim through anyway to make sure you know all the
commands we discuss and can do the tasks at the end of the lab. You may also want to
take a look at the Going Further section for more practice, and you can also help out
your classmates who have less experience than you.

What data will we use and what will we do with it?
We will explore the data from a corpus of parent-child interactions, building up

to computing the child’s mean length of utterance (MLU) in one or two files. MLU
measures a child’s language development: it is just the average number of words (or,
sometimes, morphemes) in each of the child’s utterances (spoken sentences).

Lab Setup
To set up for the labs, log into your DICE account and open a shell (also called a
terminal) following the instructions in the Introduction to DICE document. You should
see a command prompt of the form:

[hostname]username:

3

http://computing.help.inf.ed.ac.uk/remote-desktop
http://computing.help.inf.ed.ac.uk/remote-desktop

Now, create a directory (folder) called anlp that you will use for all your ANLP
work. You can do this by entering the following command at the prompt. (Remember,
mkdir stands for ’make directory’)

mkdir anlp

Now, create a subdirectory for your labs, and then another one for this lab. (You
cannot create a subdirectory before creating the directory it belongs inside.)

mkdir anlp/labs
mkdir anlp/labs/lab1

Downloading the data
In this lab we will be working with data from CHILDES, the Child Language Data
Exchange System. CHILDES is a collection of many different corpora in many differ-
ent languages, all contributed by researchers of child language development. Differ-
ent researchers have different interests, so the corpora contain different types of data
(transcriptions, audio, and/or video) and different kinds of annotations (ranging from
detailed phonetic transcripts to morphological and syntactic annotations).

We will use the Providence corpus for this lab. To download the corpus, click
on the following URL or paste it into your web browser: https://www.inf.ed.ac.uk/
teaching/courses/anlp/labs/l01/Providence.zip. You should get a dialog box asking
what to do with the file; choose Open with Archive Manager (default).
In the next window, click Extract and then navigate to your lab1 directory by
double-clicking in the right-hand pane on the anlp folder, then labs, then lab1.
Then click Extract.

ls
Go back to your terminal window and cd (meaning change directory) into the
lab1 directory:

cd anlp/labs/lab1

If you ever get confused or forget which directory you are in, use the pwd (print
working directory) command. Try it now:

pwd

Now let’s list the contents of the current directory using ls:

ls

You should now see a subdirectory called Providence, which contains the data
you just downloaded. What do you see in it? What about in the further subdirectories?

ls Providence
ls Providence/Ethan

4

http://childes.psy.cmu.edu/
https://www.inf.ed.ac.uk/teaching/courses/anlp/labs/l01/Providence.zip
https://www.inf.ed.ac.uk/teaching/courses/anlp/labs/l01/Providence.zip

Looking at the data

less
To get an idea of what is in the files you just downloaded, type:

cd Providence/Ethan
less eth01.cha

What information is in the metadata at the top of each file? (Hint: child language
researchers use the format y;m.d to indicate a child’s age in years;months.days)

(less may seem like a funny name for this command which shows you more of
the file; it’s because there was an earlier similar command called more, so when this
newer version was developed the developers decided to give it a cute name. UNIX
developers like cute names.)

When you are looking at a file using less, you can scroll up and down using the
arrow keys or <PageUp>/<PageDown>. <space> also acts like <PageDown> and
<Enter> acts like <down-arrow>.

What do you see in the rest of the file? (Hint: the string of numbers at the end of
each line is a code that links to a time point in the audio recording of this data. The
audio isn’t included here but can be obtained from the CHILDES database.)

One final useful thing you can do with less is search for a particular string in the
file by typing / followed by the string. Try it: type

/the

followed by ENTER. You should see all of the instances of the being highlighted.
To stop viewing the file and go back to the terminal command line, type q.
Actually, the eth01.cha file maybe is not so interesting. Look now at eth50.cha.

What are some of the main differences between the data in these two files? Can you
think of an explanation for those differences? (If you want to look at both files simul-
taneously, you could start a new terminal and open one file in each terminal.)

head, tail
Sometimes we just need a quick peek at part of a file. What does this command do?

head eth01.cha

What about this one?

tail eth01.cha

These commands can be useful, for example, if we want to look over the range of
ages in the files we have. Try:

head *.cha

What does the * do?

5

man
We don’t really need to look at the first 10 lines of each file to see the ages, we only
need the first five lines. If we could print only the first five lines, we could see the
information we want more compactly. Most UNIX commands, including head, have
many possible options to change their behavior. To see what options are available, look
at the manual for the command:

man head

You should see:

HEAD(1) User Commands HEAD(1)

NAME
head - output the first part of files

SYNOPSIS
head [OPTION]... [FILE]...

DESCRIPTION
Print the first 10 lines of each FILE to standard output. With more
than one FILE, precede each with a header giving the file name. With
no FILE, or when FILE is -, read standard input.

Mandatory arguments to long options are mandatory for short options
too.

-c, --bytes=[-]K
print the first K bytes of each file; with the leading ‘-’,
print all but the last K bytes of each file

-n, --lines=[-]K
print the first K lines instead of the first 10; with the lead-
ing ‘-’, print all but the last K lines of each file

-q, --quiet, --silent
never print headers giving file names

-v, --verbose
always print headers giving file names

...

Note: you should be able to move up and down in the man pages using the same
keys you used for less [I hope; the default for the student account might not allow
you to move upwards...], and you can also return to the command line using q.

The man page starts with the name of the command and a brief synopsis of how to
use it. In this case, it says that the head command can be followed by zero or more
options (sometimes called flags) and then zero or more files as arguments (things to act
on). The square brackets indicate that these options and files need not be included at
all, and the ... indicate that you can include more than one of each.

6

The description after the synopsis says what will happen if you include zero or
multiple files. (Standard input refers to the text you input in the terminal. Try entering
head with no filename to see how this works. You will need to enter some more text
after that! To quit, type Ctrl-c.)

The next part of the description tells you what the possible options are and if they
require arguments themselves. Many (in this case all) options have both a short and a
long form, which are equivalent. For example, to print just the first 5 lines of each file,
we could either use:

head -n5 eth01.cha

or:

head --lines=5 eth01.cha

(To try this yourself, you will need to either use another terminal or quit the man
page first by typing q.)

The K specified in the description is a variable indicating a required argument to the
-n option. Here we use the value 5 for K. Notice that this option also has a non-required
argument [-] so if we wanted to print all but the last 5 lines we could type:

head -n-5 eth01.cha

As noted above, you can specify multiple options at once. Compare the output of
the following commands:

head -n5 *.cha
head -n5 -q *.cha

Now that you know how to read a man page, you may want to look at the man
pages for some of the other commands we’ve seen to see what options are available for
them.

There is also a lot of help about these commands on the Internet. You can find
more examples or maybe a better explanation than the man page has. If you know the
name of the command you want to use, like grep, try searching for UNIX command
grep. If you know what you want to do but not the name of the command, searching
is trickier, but try searches like UNIX search regular expression or even
UNIX find string in file. Get in the habit of looking for help--you will
start to recognize some of the main help forums and which ones are most useful to you.

Being lazy
As you may have noticed, most UNIX commands are very short to avoid lots of typing.
You can avoid even more typing by using tab completion and history.

Tab completion
Type the following into your terminal. Instead of pressing <enter> at the end, press the
<tab> key:

head e

7

You should find that the filename has been automatically extended to eth. If you
type 01 and then <tab> again, you will have the complete filename. In this case the
tabbing didn’t save many keystrokes, but for long filenames it can save a lot. You can
use tab completion for nearly anything in UNIX (commands, filenames, directories).
The operating system will complete as much as it can but will stop where there are
multiple possible extensions (like here, where all files in the current directory start
with eth but we then had to type in 01 to disambiguate before tabbing again.) In
DICE, tab completion is set up so that if you hit <tab> twice when there are multiple
completions, the system will print out all possible completions for you to see.

History
Your terminal keeps track of all the commands you have entered. To access the previous
command, just type the up-arrow key. If you hit <up> twice, you will get the command
before that, and so forth. This can save a lot of typing.

Finding and counting things in files

wc
Try this command:

wc eth01.cha

What are the numbers that you got back? What do you think wc stands for? (Hint:
look at the man page!)

Using a single command, can you figure out which of the first nine Ethan files has
the most lines in it?

grep
Sometimes we want some more specific information. The number of lines in a file
roughly indicates how much language data is in there, but what if we want to know
how many utterances are spoken by a particular person? Try this command:

grep ’MOT’ eth01.cha

What did this command do?
Using the man page for grep, figure out what option you can use with grep to

compute the number of utterances spoken by the mother in this file.
In case you are wondering, grep stands for Globally search for a Regular Expres-

sion and Print. We won’t discuss regular expressions (REs) in detail here, but they are
covered in Section 2.1 of the Jurafsky and Martin textbook, and also in the Computer
Programming for Speech and Language Processing course. (The grep man page also
explains the syntax that grep uses for REs.) REs are a powerful way to match patterns
in text and we hope you will learn to love them. For now, we will just show you a few
simple REs to show some of what you can do.

First, look at this command but don’t run it yet:

grep ’MOT.*the’ eth01.cha

8

What do you think it will do? (Hint: . matches any character, and * means "zero
or more repetitions of the previous character")

To see if you were right, run the command and look at the first few lines of out-
put. Even better, let’s only print out the first few lines of output. We can do that by
combining two commands we already know, grep and head:

grep ’MOT.*the’ eth01.cha | head

pipes and redirection
What just happened?

The | (vertical bar on the keyboard, called pipe in UNIX-world) tells the operating
system to use the output of the first command as the input to the second command.
(Another way to think of this is that it turns the output of the first command into "stan-
dard input", which as you will recall, is what is used as input to head if no filename is
given.

Can you think of a way to use pipe to combine two commands we already know to
count the number of lines that include the string MOT without using the -c option for
grep?

Instead of sending the output of one command to the input of another, we can also
just send the output of a command into a file. This can be useful if we want to save the
output for later inspection, and we do it using the > (output redirect) character:

grep ’MOT.*the’ eth01.cha > my_output.txt
less my_output.txt

grep again
Coming back to regular expressions, let’s make sure you understand what the RE
’MOT.*the’ is matching in the grep command. What is the difference between the
following two commands?

grep ’MOT.*the’ eth01.cha
grep ’MOT.*\bthe\b’ eth01.cha

You may want to look at just the start of the output by piping it to head. Or try
using the --color=auto option for grep (unfortunately the color is lost if you pipe
the output).

In general, backslashes are used in regular expressions to indicate something spe-
cial (like a word boundary or any whitespace character) and are also used to make
characters that are usually special (like *) be interpreted literally. So, for example,
if we want to match only the lines spoken by the mother, we should use ’^*MOT’
rather than just ’MOT’, because the first version only matches the exact string *MOT at
the beginning of a line (indicated by the ^). The second version also matches lines that
are not spoken by the mother but happen to contain the string MOT. (Are there any?)

As you can start to see, regular expressions can be very powerful but proper use
takes time and practice, and we will not go any further here.

9

Computing MLU
Believe it or not, we now have all the commands we need to be able to compute the
child’s mean length of utterance in any given file. Remember, MLU is the average
number of words spoken by the child in each of the utterances in the file. What is
Ethan’s MLU in the file eth50.cha? Assume for this question that a word is any
whitespace-delimited string of characters (including punctuation) in the transcription.
So, for example, you should count fill him with pom+poms xxx . as six
words.

Hint: you can’t get the answer entirely automatically. Use the commands you know
to get a few key numbers and then perform some basic arithmetic on them yourself. This
works fine if we only care about the MLU for one or two files. If we wanted to compute
MLU for all the files, we would probably want to write a short program to do it.

Going Further
If you want, try your hand at one of the following, in whatever order you like:

1. We showed how to get all the lines from a file that contain the word ’the’. But
what if we actually want to count the number of occurrences of ’the’? Can
you figure out how to do this using grep, possibly in combination with other
commands we’ve seen? (Hint: look at other command line options to grep. If
you aren’t sure whether the output is what you want, make sure you test it! Creat
a small file of your own where you know the right answer.)

2. Suppose you are only allowed to use the same options to grep that we used
earlier in the lab. By reading the man page or searching the Web, figure out how
the tr command works, and use it together with commands we’ve seen to count
the number of occurrences of ’the’ in a file.

3. We’ve covered a few useful commands here, but there are quite a few more that
can come in handy for text processing and other NLP-related tasks. To learn
more about those, you may want to go through the Unix for Poets5 tutorial.

10

https://web.stanford.edu/class/cs124/kwc-unix-for-poets.pdf

	Preamble: how to do the labs for this course
	Preliminaries: to do before the first lab session
	Goals and motivation of this lab
	Lab Setup
	Downloading the data
	ls

	Looking at the data
	less
	head, tail
	man

	Being lazy
	Tab completion
	History

	Finding and counting things in files
	wc
	grep
	pipes and redirection
	grep again

	Computing MLU
	Going Further

