ANLP Week 1 / Lecture 2 Thinking about Ambiguity and Words

Adam Lopez

(based on slides by Sharon Goldwater)

This Lecture

Ambiguity

- What are different sources of ambiguity?
- When and how is ambiguity resolved?

Words and their distribution

- What are word types and tokens, and what is the characteristic frequency distribution of word tokens?
- What aspects of frequency distributions of words are similar between languages, and what aspects are different, and why?

Thinking More About Ambiguity

Reminder: What Makes Language Difficult?

In Lecture 1, I mentioned three characteristics:

- Ambiguities on many levels, need context to disambiguate
- Rules, but many exceptions
- Language is infinite. We cannot see examples of everything, and the vast majority of what we do see is rare

Revisiting Ambiguity

I discussed two jokes that use different types of ambiguity:

1. Lexical semantic ambiguity (meaning of a word):

I'm not a fan of the new pound coin, but then again, I hate all change. ${ }^{1}$
2. Syntactic ambiguity (relationship between words):

One morning I shot an elephant in my pajamas. How he got in my pajamas I don't know. ${ }^{2}$

[^0]
Ambiguity and Context

- Ambiguity is usually resolved by context or world knowledge.
- Word-level ambiguity resolved by sentence-level context: The change of scenery was nice.
- Phrase-level ambiguity resolved by sentence-level context: I ate the carrots in the garden, after I brought them inside.
- Sentence-level ambiguity resolved by world knowledge: I cooked the fish in the freezer.
- Challenges for NLP are to resolve ambiguity both
- Correctly: requires good models of language; and
- Efficiently: requires good algorithms for processing.

A quick poll

In a moment l'll show a question. Don't shout out the answer, just think to yourself. Then I'll ask for a show of hands.

Poll: type of ambiguity

What type of ambiguity does the following sentence contain?

I passed the bar this morning.

1. Lexical
2. Syntactic
3. Both
4. Neither
5. I don't know

Activity: More Examples of Ambiguity

In a moment, l'll ask you to discuss some other examples.

1. I'll show some additional examples of ambiguity and ask you to think about them by yourself (2 minutes).
2. I'll ask you to talk to your neighbours in groups of 2-3 to see if you agree, or to help each other if you're stuck (4 minutes).

- If you're all stuck, move on and ask afterwards.

3. When done, I'll ask a few volunteers to report back, and I can answer questions.

Think to Yourself (2 minutes)

Look over the sentences below. For each one, try to:

- Identify one source of ambiguity or potential ambiguity. Is it lexical? Syntactic? Neither?
- Some sentences may have multiple ambiguities! Just pick one!
- Decide if the ambiguity is already resolved by world knowledge or context. If so, which?

1. I like the other chair better.
2. I drew the girl with the jumper.
3. The first line of this joke:

Sam: We should replace the sofa.
Alex: Really? I wouldn't like being sat on all the time.

Small Group Task (4 minutes)

- First, introduce yourselves if you haven't already.
- Then, each person pick one of the sentences below, and say:
- What type of ambiguity did you find? If it is resolved by world knowledge or context, explain how.
- If the sentence is still ambiguous, can you provide an unambiguous paraphrase (re-wording) of each plausible meaning?
- Do you all agree on the examples? Did you find anything that someone else missed?

1. I like the other chair better.
2. I drew the girl with the jumper.
3. The first line of this joke:

Sam: We should replace the sofa.
Alex: Really? I wouldn't like being sat on all the time.

Recap: What Did You Find?

1. I like the other chair better.
2. I drew the girl with the jumper.
3. The first line of this joke:

Sam: We should replace the sofa.
Alex: Really? I wouldn't like being sat on all the time.

Words as data
 (Types, tokens, and Zipf's law)

Data：Words

In this class，we will consider written language（text）．Keep in mind that writing is itself a technology！

What is a word？Possible definition：strings of letters separated by spaces
－But how about：
－punctuation：commas，periods，etc are normally not part of words，but others less clear：high－risk，Joe＇s，＠sloppyjoe
－compounds：website，Computerlinguistikvorlesung
－And what if there are no spaces：伦敦每日快报指出，两台记载黛安娜王妃一九九七年巴黎死亡车祸调查资料的手提电脑，被从前大都会警察总长的办公室里偷走。

Processing text to decide／extract words is called tokenization．

Word Counts

Out of 24 m total word tokens (instances) in the English Europarl corpus, the most frequent are:
any word

Frequency	Token
$1,698,599$	the
849,256	of
793,731	to
640,257	and
508,560	in
407,638	that
400,467	is
394,778	a
263,040	I

nouns

Frequency	Token
124,598	European
104,325	Mr
92,195	Commission
66,781	President
62,867	Parliament
57,804	Union
53,683	report
53,547	Council
45,842	States

Word Counts

But there are 93638 distinct words (types) altogether, and 36231 occur only once! Examples:

- cornflakes, mathematicians, fuzziness, jumbling
- pseudo-rapporteur, lobby-ridden, perfunctorily,
- Lycketoft, UNCITRAL, H-0695
- policyfor, Commissioneris, 145.95, 27a

Plotting word frequencies

Order words by frequency. What is the freq of nth ranked word?

1800000	Word frequency vs. rank	Frequency	Token	Rank
1600000		1,698,599	the	1
1400000		849,256	of	2
$\chi^{1200000}$		793,731	to	3
¢ 1000000		640,257	and	4
¢ 80		508,560	in	5
600000,		407,638	that	6
400000		400,467	is	7
200000		394,778	a	8
0	20000400006000080000100000	263,040	I	9

Plotting word frequencies

Order words by frequency. What is the freq of nth ranked word?

Rescaling the axes

To really see what's going on, use logarithmic axes:

We will use logarithms again in this course. Please brush up on them if you are rusty.

What about other languages?

Zipf's law

Summarizes the behaviour we just saw:

$$
f \times r \approx k
$$

- $f=$ frequency of a word
- $r=$ rank of a word (if sorted by frequency)
- $k=a$ constant

Zipf's law

Summarizes the behaviour we just saw:

$$
f \times r \approx k
$$

- $f=$ frequency of a word
- $r=$ rank of a word (if sorted by frequency)
- $k=a$ constant

Why does Zipf's law look like a line in log-scale?

$$
\begin{aligned}
f r=k \Rightarrow f=\frac{k}{r} \Rightarrow \log f & =\log k-\log r \\
y & =c-x
\end{aligned}
$$

Linguistics and Data

- Data
- looking at real use of language in text
- can learn a lot from empirical evidence
- but: Zipf's law means there will always be rare instances
- Linguistics
- build a better understanding of language structure
- linguistic analysis points to what is important
- but: many ambiguities cannot be explained easily

Two plots in more detail

Although the shape is similar, the scale at the x-axis is different! What explains this?

How Many Different Words?

10,000 sentences from the Europarl corpus

Language	Different words
English	16 k
French	22 k
Dutch	24 k
Italian	25 k
Portuguese	26 k
Spanish	26 k
Danish	29 k
Swedish	30 k
German	32 k
Greek	33 k
Finnish	55 k

Why the difference? Morphology: topic of next lecture.

[^0]: ${ }^{1}$ Ken Cheng, 2017. (Winner of Dave's Funniest Joke of the Fringe award.)
 ${ }^{2}$ Groucho Marx, in the 1930 film Animal Crackers.

