
ANLP Tutorial Worksheet for Week 9 (v1.2) WITH SOLUTIONS

Sharon Goldwater (School of Informatics, University of Edinburgh)

Exercise 1
Consider the following “world” (knowledge base):

𝑐𝑎𝑡(𝑍𝑜𝑜𝑡) 𝑜𝑤𝑛𝑠(𝑀𝑎𝑟𝑦, 𝑍𝑜𝑜𝑡) 𝑤𝑎𝑙𝑘𝑠(𝑆𝑝𝑜𝑡)
𝑐𝑎𝑡(𝑊ℎ𝑖𝑠𝑘𝑒𝑟𝑠) 𝑜𝑤𝑛𝑠(𝑀𝑎𝑟𝑦, 𝑆𝑝𝑜𝑡) 𝑤𝑎𝑙𝑘𝑠(𝑊ℎ𝑖𝑠𝑘𝑒𝑟𝑠)
𝑑𝑜𝑔(𝑆𝑝𝑜𝑡) 𝑜𝑤𝑛𝑠(𝐿𝑖,𝑊ℎ𝑖𝑠𝑘𝑒𝑟𝑠) 𝑤𝑎𝑙𝑘𝑠(𝑀𝑎𝑟𝑦, 𝑍𝑜𝑜𝑡)
𝑏𝑟𝑜𝑤𝑛(𝑆𝑝𝑜𝑡) 𝑤𝑎𝑙𝑘𝑠(𝐿𝑖, 𝑆𝑝𝑜𝑡)
𝑏𝑟𝑜𝑤𝑛(𝑍𝑜𝑜𝑡)

Give the denotation of each of the following FOL expressions with respect to this world.

a) owns(Li, Zoot)

b) owns(Mary, x)

c) walks/2

d) dog/1

e) dog(Zoot) ⇒ walks(Zoot)

f) ∀𝑥. cat(x) ⇒ walks(x)

g) ∀𝑥.∀𝑦. walks(x, y) ⇒ walks(y)

h) ∃𝑥.∀𝑦. walks(x, y) ⇒ walks(y)

Solutions

a) False

b) {𝑍𝑜𝑜𝑡, 𝑆𝑝𝑜𝑡}
c) {(𝑀𝑎𝑟𝑦, 𝑍𝑜𝑜𝑡), (𝐿𝑖, 𝑆𝑝𝑜𝑡)}
d) {𝑆𝑝𝑜𝑡} (note this is a set, not just an entity)

e) True (because the antecedent is false)

f) False

g) False

h) True

1

Exercise 2
Convert the following FOL expressions into natural language sentences.

a) ∀𝑥.𝑟𝑎𝑏𝑏𝑖𝑡(𝑥) ⇒ 𝑓𝑢𝑟𝑟𝑦(𝑥)
b) ∃𝑒.ℎ𝑒𝑙𝑝(𝑒) ∧ ℎ𝑒𝑙𝑝𝑒𝑟(𝑒, 𝐹𝑟𝑎𝑛𝑧) ∧ ℎ𝑒𝑙𝑝𝑒𝑒(𝑒,𝑀𝑎𝑟𝑖𝑒)
c) ∃𝑒.𝑥.𝑒𝑎𝑡𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ(𝑥) ∧ 𝑒𝑎𝑡𝑒𝑟(𝑒, 𝐿𝑖𝑎𝑛𝑔) ∧ 𝑒𝑎𝑡𝑒𝑛(𝑒, 𝑥)
d) ∃𝑒.𝑥.𝑦.𝑒𝑎𝑡𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ(𝑥) ∧ 𝑓𝑜𝑟𝑘(𝑦) ∧ 𝑒𝑎𝑡𝑒𝑟(𝑒, 𝐿𝑖𝑎𝑛𝑔) ∧ 𝑒𝑎𝑡𝑒𝑛(𝑒, 𝑥) ∧ 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡(𝑒, 𝑦)

For the next two, try to come up with relatively natural-sounding English sentences that unambiguously express
the meaning of each expression. First consider what the difference is between the two!

e) ∀𝑥.𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥) ⇒ ∃𝑒.𝑙𝑖𝑓𝑡𝑖𝑛𝑔(𝑒) ∧ 𝑙𝑖𝑓𝑡𝑒𝑟(𝑒, 𝑥) ∧ 𝑙𝑖𝑓𝑡𝑒𝑒(𝑒,𝑀𝑎𝑟𝑖𝑒)
f) ∃𝑒.𝑙𝑖𝑓𝑡𝑖𝑛𝑔(𝑒) ∧ ∀𝑥.𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥) ⇒ 𝑙𝑖𝑓𝑡𝑒𝑟(𝑒, 𝑥) ∧ 𝑙𝑖𝑓𝑡𝑒𝑒(𝑒,𝑀𝑎𝑟𝑖𝑒)

Solutions

a) All rabbits are furry

b) Franz helps Marie

c) Liang eats a sandwich

d) Liang eats a sandwich with a fork

e) Each student lifts Marie. [Notice there is a separate lifting event for each student. So it could also be stated
as “All the students (separately) lift Marie”. But simply saying “All the students lift Marie” is ambiguous
because that sentence could also have the MR in (f).]

f) The students all lift Marie together. [Notice that here there is a single lifting event for all students.]

Exercise 3
Convert the following natural language sentences into FOL expressions. Use reified event semantics. If a sentence
is ambiguous, list all possible interpretations and give paraphrases of the different meanings.

a) Fiona hates Ewan

b) Partha eats pizza

c) Every student likes Juan

d) Some student likes every class

e) Ella sees herself

f) Ella dances every Tuesday

Solutions

a) ∃𝑒.ℎ𝑎𝑡𝑖𝑛𝑔(𝑒) ∧ ℎ𝑎𝑡𝑒𝑟(𝑒, 𝐹 𝑖𝑜𝑛𝑎) ∧ ℎ𝑎𝑡𝑒𝑒(𝑒, 𝐸𝑤𝑎𝑛)
b) There are two meanings, though not due to any form of ambiguity we’ve discussed before. The ambiguity here

is caused by the verb. (a) Partha is currently eating a pizza: ∃𝑒.𝑒𝑎𝑡𝑖𝑛𝑔(𝑒)∧𝑒𝑎𝑡𝑒𝑟(𝑒, 𝑃𝑎𝑟𝑡ℎ𝑎)∧∃𝑥.𝑝𝑖𝑧𝑧𝑎(𝑥)∧
𝑒𝑎𝑡𝑒𝑛(𝑒, 𝑥) (or perhaps we might want to think of “pizza” as a mass noun and treat it as an entity, yielding
∃𝑒.𝑒𝑎𝑡𝑖𝑛𝑔(𝑒) ∧ 𝑒𝑎𝑡𝑒𝑟(𝑒, 𝑃𝑎𝑟𝑡ℎ𝑎) ∧ 𝑒𝑎𝑡𝑒𝑛(𝑒, 𝑝𝑖𝑧𝑧𝑎)). OR (b) Partha habitually or in principle eats pizza: It is
much less clear how to translate this sentence into FOL, since our usual event semantics assume the existence
of a single event with particular properties. In this case there are potentially many (or no) actual pizza-eating

2

events. (I don’t know how a semanticist would deal with this case, but to me it seems to share some of the
same problems as so-called generic statements like “birds can fly” or “cats are furry”, whose semantics are
very much a subject of research.)

c) ∀𝑥.𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥) ⇒ ∃𝑒.𝑙𝑖𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑙𝑖𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑙𝑖𝑘𝑒𝑒(𝑒, 𝐽𝑢𝑎𝑛) (Note that placing the ∃𝑒 outside the ∀𝑥 would
be a bit weird: it suggests that all students participate in a single collective liking event.

d) Quantifier scope ambiguity leads to two meanings. (a) There is a single student who likes all classes:
∃𝑥.𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥) ∧ ∀𝑦.𝑐𝑙𝑎𝑠𝑠(𝑦) ⇒ ∃𝑒.𝑙𝑖𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑙𝑖𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑙𝑖𝑘𝑒𝑒(𝑒, 𝑦) OR (b) Each class is liked by at least
one student: ∀𝑥.𝑐𝑙𝑎𝑠𝑠(𝑥) ⇒ ∃𝑦.𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑦) ∧ ∃𝑒.𝑙𝑖𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑙𝑖𝑘𝑒𝑟(𝑒, 𝑦) ∧ 𝑙𝑖𝑘𝑒𝑒(𝑒, 𝑥)

e) ∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝐸𝑙𝑙𝑎) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝐸𝑙𝑙𝑎)
f) ∀𝑥.𝑇𝑢𝑒𝑠𝑑𝑎𝑦(𝑥) ⇒ ∃𝑒.𝑑𝑎𝑛𝑐𝑖𝑛𝑔(𝑒) ∧ 𝑑𝑎𝑛𝑐𝑒𝑟(𝑒, 𝐸𝑙𝑙𝑎) ∧ 𝑡𝑖𝑚𝑒(𝑒, 𝑥) (or perhaps replace the final conjunct with

something like 𝑑𝑢𝑟𝑖𝑛𝑔(𝑒, 𝑥)).

Exercise 4
Suppose we have the following grammar fragment with semantic attachments. Grammar rules are numbered to
help you refer to them in discussion.

Syntactic Rule Semantic attachment
1. Det → a 𝜆𝑃 .𝜆𝑄.∃𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥)
2. Det → the 𝜆𝑃 .𝜆𝑄.∃!𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥)
3. N→dog 𝜆𝑥.𝑑𝑜𝑔(𝑥)
4. N→park 𝜆𝑥.𝑝𝑎𝑟𝑘(𝑥)
5. NP→Sam 𝜆𝑃 .𝑃 (𝑆𝑎𝑚)
6. NP→Spot 𝜆𝑃 .𝑃 (𝑆𝑝𝑜𝑡)
7. P→in 𝜆𝑃 .𝜆𝑄𝜆𝑥.𝑃 (𝜆𝑦.𝑖𝑛(𝑥, 𝑦)) ∧ 𝑄(𝑥)
8. Vi→walks 𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥)
9. Vi→sees 𝜆𝑥.∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥)

10. Vt→walks 𝜆𝑃𝜆𝑥.𝑃 (𝜆𝑦.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑦))
11. Vt→sees 𝜆𝑃𝜆𝑥.𝑃 (𝜆𝑦.∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝑦))
12. Nom → N N.sem
13. Nom → Nom PP PP.sem(Nom.sem)
14. NP → Det Nom Det.sem(Nom.sem)
15. PP → P NP P.sem(NP.sem)
16. VP → Vi Vi.sem
17. VP → Vt NP Vt.sem(NP.sem)
18. VP → VP PP PP.sem(VP.sem)
19. S → NP VP NP.sem(VP.sem)

a) Show how the meanings of Sam sees and The dog walks are built up using this grammar. (Note: the ∃!
symbol in the MR for the means “there exists a unique”—where the uniqueness is normally assumed to be
determined by context. In other words, “the dog walks” would be true if there is a dog that walks, and it is
the only dog currently salient to the speaker. One could argue whether this is a good enough semantics, but
it will do for us here.)

b) Why are the transitive verb meanings so much more complicated than their intransitive counterparts? That
is, why didn’t we define the meaning of walks to be just

𝜆𝑦.𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑦)?

(Hint: what happens when you combine the Vt with the object NP?)

3

c) Consider the following pairs of sentences:

(1) “Sam walks Spot”, “Sam walks”
(2) “Sam sees Spot”, “Sam sees”

• In each pair, is the second sentence entailed by the first sentence? Why or why not? (If not, provide a
situation that proves your point.)

• Now consider the MRs for these sentences, as computed using the grammar in Exercise 4. Do these
have the same entailment relationships as the sentences, or is there a mismatch? If so, how might you
fix that mismatch?

Hint: If you are having trouble deriving the MRs for these sentences using the grammar, can you see what
they are supposed to be? If so, you may be still able to answer this question, although computing the MRs
will give you practice with complicated lambda reductions.

d) (Optional challenge question) Compute the meanings of the two different syntactic parses of the sentence
“Sam sees a dog in the park”. There is a problem with one of the meanings (that is, it isn’t really correct).
Identify the problem and say what the correct meaning should be. You don’t need to fix the grammar to
make that meaning come out, but you may want to think about why it’s difficult to do so.

Solutions

a) The syntactic trees are:

In the first tree, the meanings attached to each tree node are as follows:

• Sam, NP: 𝜆𝑃 .𝑃 (𝑆𝑎𝑚)
• sees, Vi, VP: 𝜆𝑥.∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥)
• S: derived as NP.sem(VP.sem), which is

(𝜆𝑃 .𝑃 (𝑆𝑎𝑚))[𝜆𝑥.∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥)] = (𝜆𝑥.∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥))[𝑆𝑎𝑚]
= ∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑆𝑎𝑚)

I’ve added a little more notation to keep things clear: I put round brackets around the lambda expression
that’s about to undergo lambda reduction, and square brackets around the expression that’s about to be
substituted in place of the lambda variable. This will help especially with more complicated reductions
below.

In the second tree, the meanings attached to each tree node are as follows:

4

• the, Det: 𝜆𝑃 .𝜆𝑄.∃!𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥)
• dog, N, Nom: 𝜆𝑥.𝑑𝑜𝑔(𝑥)
• walks, Vi, VP: 𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥)
• NP (the dog): derived as Det.sem(Nom.sem), which is

(𝜆𝑃 .𝜆𝑄.∃!𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥))[𝜆𝑥.𝑑𝑜𝑔(𝑥)] = (𝜆𝑃 .𝜆𝑄.∃!𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥))[𝜆𝑦.𝑑𝑜𝑔(𝑦)]
= 𝜆𝑄.∃!𝑥.(𝜆𝑦.𝑑𝑜𝑔(𝑦))[𝑥] ∧ 𝑄(𝑥)
= 𝜆𝑄.∃!𝑥.𝑑𝑜𝑔(𝑥) ∧ 𝑄(𝑥)

I did something important in the first line: before I substituted 𝜆𝑥.𝑑𝑜𝑔(𝑥) in for 𝑃 , I re-named the
variable 𝑥 in the substituted expression and called it 𝑦. That’s because there was already an 𝑥 in the
outer expression. In this case, those 𝑥’s turn out to refer to the same thing, but that isn’t guaranteed
to be the case. If I didn’t re-name the variable, I might have ended up making two variables that are
supposed to refer to different things actually refer to the same thing. (This is basically a namespace
issue, just like what happens when you define a variable inside a function in Python with the same
name as one outside the function: implicitly, Python treats them as two different things. Here we have
to rename one of them explicitly to avoid clashes.)

• S: derived as NP.sem(VP.sem), which is

(𝜆𝑄.∃!𝑥.𝑑𝑜𝑔(𝑥) ∧ 𝑄(𝑥))[𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥)]
= ∃!𝑥.𝑑𝑜𝑔(𝑥) ∧ (𝜆𝑦.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑦))[𝑥]
= ∃!𝑥.𝑑𝑜𝑔(𝑥) ∧ ∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥)

Again, notice that I re-named the 𝑥 in the “walk” part in the second line.

b) The problem is that the semantic attachment for VP says that the Vt takes the NP as its argument. But all
our NPs have meanings like 𝜆𝑃 .(…). If we apply the proposed simple (base-form) MR for see to something
like that, we substitute the complex NP MR for 𝑦 and end up with an invalid FOL expression. The solution
is to type-raise the MRs for transitive verbs, just as we saw type-raising for NPs in lecture. This allows the
Vt to take its NP argument and apply that NP to the base meaning of the Vt. For example, the MR for
walks Spot is derived as follows.

(𝜆𝑃𝜆𝑥.𝑃 (𝜆𝑦.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑦))[𝜆𝑃 .𝑃 (𝑆𝑝𝑜𝑡)]
= (𝜆𝑃𝜆𝑥.𝑃 (𝜆𝑦.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑦))[𝜆𝑄.𝑄(𝑆𝑝𝑜𝑡)])
= 𝜆𝑥.(𝜆𝑄.𝑄(𝑆𝑝𝑜𝑡))[𝜆𝑦.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑦)]
= 𝜆𝑥.(𝜆𝑦.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑦))[𝑆𝑝𝑜𝑡]
= 𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑆𝑝𝑜𝑡)

c) We just showed how to compute the meaning of the VP in “Sam walks Spot”. We can combine it with the
subject NP using the NP.sem(VP.sem) attachment as follows:

(𝜆𝑃 .𝑃 (𝑆𝑎𝑚))[𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑆𝑝𝑜𝑡)]
= (𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑆𝑝𝑜𝑡))[𝑆𝑎𝑚]
= ∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑆𝑎𝑚) ∧ 𝑤𝑎𝑙𝑘𝑒𝑒(𝑒, 𝑆𝑝𝑜𝑡)

To compute the MR for “Sam walks” we have:

(𝜆𝑃 .𝑃 (𝑆𝑎𝑚))[𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥)]
= (𝜆𝑥.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑥))[𝑆𝑎𝑚]
= ∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑆𝑎𝑚)

5

So, according to the meaning representations, “Sam walks” is entailed by “Sam walks Spot”: in every case
where the latter is true, the former will also be true. However, in common usage, this entailment does not
hold. For example, I might walk a dog by standing with a leash and letting the dog run around, or by riding
a bicycle with the dog on a leash. This is different from the pair “Sam sees Spot”/“Sam sees” because in
this case, the second sentence really is entailed by the first one.

The issue with “walk” is that the transitive form actually has a slightly different meaning from the intransitive
form. It means something like “make someone/something walk”: the object of “walk” is the walker, not the
subject. So we might consider changing the MR to something like the following, where 𝑦 (which will be the
object of the sentence) is now the walker instead of the walkee.

𝜆𝑃𝜆𝑥.𝑃 (𝜆𝑦.∃𝑒.𝑤𝑎𝑙𝑘𝑖𝑛𝑔(𝑒) ∧ 𝑤𝑎𝑙𝑘𝑒𝑟(𝑒, 𝑦) ∧ 𝑖𝑛𝑠𝑡𝑖𝑔𝑎𝑡𝑜𝑟(𝑒, 𝑥))
d) First, the analysis where PP attaches inside NP. I use subscripts so I can refer to the nodes when there are

multiple ones with the same phrasal category.

The MRs derived at each node are as follows:

• park, N1, Nom1: 𝜆𝑥.𝑝𝑎𝑟𝑘(𝑥)
• the, Det1: 𝜆𝑃 .𝜆𝑄.∃!𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥)
• NP1, as Det1.sem(Nom1.sem):

(𝜆𝑃 .𝜆𝑄.∃!𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥))[𝜆𝑦.𝑝𝑎𝑟𝑘(𝑦)] = 𝜆𝑄.∃!𝑥.(𝜆𝑦.𝑝𝑎𝑟𝑘(𝑦))[𝑥] ∧ 𝑄(𝑥)
= 𝜆𝑄.∃!𝑥.𝑝𝑎𝑟𝑘(𝑥) ∧ 𝑄(𝑥)

• in, P: 𝜆𝑃 .𝜆𝑄𝜆𝑥.𝑃 (𝜆𝑦.𝑖𝑛(𝑥, 𝑦)) ∧ 𝑄(𝑥)

6

• PP (in the park), as P.sem(NP1.sem):

(𝜆𝑃 .𝜆𝑄𝜆𝑥.𝑃 (𝜆𝑦.𝑖𝑛(𝑥, 𝑦)) ∧ 𝑄(𝑥))[𝜆𝑄.∃!𝑥.𝑝𝑎𝑟𝑘(𝑥) ∧ 𝑄(𝑥)]
= (𝜆𝑃 .𝜆𝑄𝜆𝑥.𝑃 (𝜆𝑦.𝑖𝑛(𝑥, 𝑦)) ∧ 𝑄(𝑥))[𝜆𝑅.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑅(𝑧)]
= 𝜆𝑄𝜆𝑥.(𝜆𝑅.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑅(𝑧))[𝜆𝑦.𝑖𝑛(𝑥, 𝑦)] ∧ 𝑄(𝑥)
= 𝜆𝑄𝜆𝑥.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ (𝜆𝑦.𝑖𝑛(𝑥, 𝑦))[𝑧] ∧ 𝑄(𝑥)
= 𝜆𝑄𝜆𝑥.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑥, 𝑧) ∧ 𝑄(𝑥)

• dog, N2, Nom2: 𝜆𝑥.𝑑𝑜𝑔(𝑥)
• Nom3 (dog in the park), as PP.sem(Nom2.sem):

(𝜆𝑄𝜆𝑥.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑥, 𝑧) ∧ 𝑄(𝑥))[𝜆𝑦.𝑑𝑜𝑔(𝑦)]
= 𝜆𝑥.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑥, 𝑧) ∧ (𝜆𝑦.𝑑𝑜𝑔(𝑦))[𝑥]
= 𝜆𝑥.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑥, 𝑧) ∧ 𝑑𝑜𝑔(𝑥)

• a, Det2: 𝜆𝑃 .𝜆𝑄.∃𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥)
• NP2 (a dog in the park), as Det2.sem(Nom3.sem):

(𝜆𝑃 .𝜆𝑄.∃𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥))[𝜆𝑥.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑥, 𝑧) ∧ 𝑑𝑜𝑔(𝑥)]
= (𝜆𝑃 .𝜆𝑄.∃𝑥.𝑃 (𝑥) ∧ 𝑄(𝑥))[𝜆𝑦.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑦, 𝑧) ∧ 𝑑𝑜𝑔(𝑦)]
= 𝜆𝑄.∃𝑥.(𝜆𝑦.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑦, 𝑧) ∧ 𝑑𝑜𝑔(𝑦))[𝑥] ∧ 𝑄(𝑥)
= 𝜆𝑄.∃𝑥.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑥, 𝑧) ∧ 𝑑𝑜𝑔(𝑥) ∧ 𝑄(𝑥)

• sees, Vt: 𝜆𝑃𝜆𝑥.𝑃 (𝜆𝑦.∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝑦))
• VP, as Vt.sem(NP2.sem):

(𝜆𝑃𝜆𝑥.𝑃 (𝜆𝑦.∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝑦)))[𝜆𝑄.∃𝑤.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑤, 𝑧) ∧ 𝑑𝑜𝑔(𝑤) ∧ 𝑄(𝑤)]
= …
= 𝜆𝑥.∃𝑤.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑤, 𝑧) ∧ 𝑑𝑜𝑔(𝑤) ∧ ∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑥) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝑤)

• Sam, NP3: 𝜆𝑃 .𝑃 (𝑆𝑎𝑚)
• And finally, if we apply NP3.sem(VP.sem), we can reduce the entire MR to:

∃𝑤.∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑤, 𝑧) ∧ 𝑑𝑜𝑔(𝑤) ∧ ∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑆𝑎𝑚) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝑤)

The derivation is tedious, but it is nice to see that the resulting MR is what we’d expect: the dog is in the
park, and Sam sees the dog.

I will not go through the whole derivation for the second tree, where PP attaches to VP:

7

Suffice to say that it derives the following MR:

∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ 𝑖𝑛(𝑆𝑎𝑚, 𝑧) ∧ ∃𝑤.𝑑𝑜𝑔(𝑤) ∧ ∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑆𝑎𝑚) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝑤)

This is not too bad for the current sentence: Sam is in the park and sees the dog. However, it’s only
accidentally right: technically the seeing event is the thing that should be in the park, not Sam. For “see”
it’s hard to separate the two, but consider the syntactically identical sentence “Sam cooks a potato in the
oven”. In this case it’s clear that the cooking, not Sam, is the thing “in the oven”.

So the correct meaning should really be:

∃!𝑧.𝑝𝑎𝑟𝑘(𝑧) ∧ ∃𝑤.𝑑𝑜𝑔(𝑤) ∧ ∃𝑒.𝑠𝑒𝑒𝑖𝑛𝑔(𝑒) ∧ 𝑠𝑒𝑒𝑟(𝑒, 𝑆𝑎𝑚) ∧ 𝑠𝑒𝑒𝑛(𝑒, 𝑤) ∧ 𝑖𝑛(𝑒, 𝑧)

8

	Exercise 1
	Solutions

	Exercise 2
	Solutions

	Exercise 3
	Solutions

	Exercise 4
	Solutions

