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Recap

▶ So far, we have looked at:
▶ Propositional logic, semantics and proof systems

▶ Introduced L-System Sequent Calculus: left and right
introduction rules

▶ Doing propositional logic proofs in Isabelle
▶ Today:

▶ Syntax (and Semantics) of First-Order Logic (FOL)
▶ Natural Deduction rules for FOL
▶ Doing FOL proofs in Isabelle



Problem

Consider the following problem:
1. If someone cheats then everyone loses the game.
2. If everyone who cheats also loses, then I lose the game.
3. Did I lose the game?

Is Propositional Logic rich enough to formally represent and reason
about this problem?

The finer logical structure of this problem would not be captured by
the constructs we have so far encountered.

We need a richer language!



A Richer Language

First-order (predicate) logic (FOL) extends propositional logic:
▶ Atomic formulas are assertions about properties of individual(s).

e.g. an individual might have the property of being a cheat.
▶ We can use variables to denote arbitrary individuals.

e.g. x is a cheater.
▶ We can bind variables with quantifiers ∀ (for all) and ∃ (exists).

e.g. for all x, x is a cheater.
▶ We can use connectives to compose formulas:

e.g. for all x, if x is a cheater then x loses.
▶ We can use quantifiers on subformulas.

e.g. we can formally distinguish between: “if anyone cheats
we lose the game” and “if everyone cheats, we lose the game”.



Terms of First-Order Logic

Given:
▶ a countably infinite set of (individual) variables

V = {x, y, z, . . .};
▶ a finite or countably infinite set of function letters F each

assigned a unique arity (possibly 0)
then the set of (well-formed) terms is the smallest set such that
▶ any variable v ∈ V is a term;
▶ if f ∈ F has arity n, and t1, . . . tn are terms, so is f (t1, . . . , tn).

Remarks
▶ If f has arity 0, we usually write f rather than f (), and call f a

constant

▶ In practice, we use infix notation when appropriate: e.g., x+ y instead
of +(x, y).
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Formulas of First-Order Logic
Given a countably infinite set of predicates P , each assigned a
unique arity (possibly 0), the set of wffs is the smallest set such that
▶ if A ∈ P has arity n, and t1, . . . tn are terms, then A(t1, . . . , tn)

is a wff;
▶ if P and Q are wffs, so are ¬P, P ∨ Q, P ∧ Q, P → Q, P ↔ Q,
▶ if P is a wff, so are ∃x. P and ∀x. P for any x ∈ V ;
▶ if P is a wff, then (P) is a wff.

Remarks
▶ If A has arity 0, we usually write A rather than A(), and call A a

propositional variable. This way, propositional logic wffs look like a
subset of FOL wffs. Also, use infix notation where appropriate.

▶ We assume ∃x and ∀x bind more weakly than any of the propositional
connectives.
∃x.P ∧ Q is ∃x.(P ∧ Q), not (∃x.P) ∧ Q.
Note: H&R assume ∃x and ∀x bind like ¬. So, use brackets to make
things unambiguous, if need be.
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Example: Problem Revisited

We can now formally represent our problem in FOL:
▶ Assumption 1: If someone cheats then everyone loses the

game: (∃x.Cheats(x)) → ∀x. Loses(x).
▶ Assumption 2: If everyone who cheats also loses, then I lose

the game : (∀x.Cheats(x) → Loses(x)) → Loses(me).
To answer the question Did I lose the game? we need to prove either
Loses(me) or ¬Loses(me) from these assumptions.

More on this later.



Free and Bound Variables

▶ An occurrence of a variable x in a formula P is bound if it is in
the scope of a ∀x or ∃x quantifier.

▶ A variable occurrence x is in the scope of a quantifier
occurrence ∀x or ∃x if the quantifier occurrence is the first
occurrence of a quantifier over x in a traversal from the variable
occurrence position to the root of the formula tree.

▶ If a variable occurrence is not bound, it is free

Example
In

P(x) ∧ (∀x. P(y) → P(x))

The first occurrence of x and the occurrence of y are free, while the
second occurrence of x is bound.
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Substitution Rules

If P is a formula, s is a term and x is a variable, then

P [s/x]

is the formula obtained by substituting s for all free occurrences of
x throughout P.

Example

(∃x. P(x, y)) [3/y] ≡ ∃x. P(x, 3)
(∃x. P(x, y)) [2/x] ≡ ∃x. P(x, y).

If necessary, bound variables in P must be renamed to avoid capture
of free variables in s.

(∃x. P(x, y)) [f(x)/y] = ∃z. P(z, f(x))



Semantics of First-Order Logic Formulas¹

(Recall that an interpretation for propositional logic maps atomic propositions to truth values.)

Informally, an interpretation of a formula maps its function letters
to actual functions, and its predicate symbols to actual predicates.

The interpretation also specifies some domain of discourse D (a
non-empty set or universe) on which the functions and relations are
defined.

A formal definition requires some work!

¹Non-examinable



Semantics of FOL Formulas (II)²

Definition (Interpretation)
Let F be a set of function symbols and P be a set of predicate
symbols.
An interpretation I consists of a non-empty set D of concrete
values, called the domain of the intepretation, together with the
following mappings
1. each predicate symbol P ∈ P of arity n > 0 is assigned to a

subset P I ⊆ Dn of n-tuples of D. Each nullary predicate is
assigned either T or F.

2. Each function symbol f ∈ F of arity n > 0 is assigned to a
concrete function f I : Dn → D. Each nullary function
(constant) is assigned to a concrete value in D.

²Non-examinable



Example of Interpretation³
Consider the following statement, containing constant a:

P(a) ∧ ∃x.Q(a, x) (∗)

In one possible interpretation I :
▶ the domain D is the set of natural numbers N = {0, 1, 2, 3, . . .};
▶ Mappings:

▶ 2 to a i.e. a I ≡ 2,
▶ the property of being even to P i.e. P I ≡ {0, 2, 4, . . .}, and
▶ the relation of being greater than to Q, i.e. the set of pairs

Q I ≡ {(1, 0), . . . , (2, 0), (2, 1), . . . , (89, 27), . . . };
▶ under this interpretation: (∗) affirms that 2 is even and there

exists a natural number that 2 is greater than. Is (∗) satisfied
under this interpretation?

▶ Such a satisfying interpretation is sometimes known as a model.
Note: In H&R, a model is any interpretation (so be careful).

³Non-examinable
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Semantics of FOL Formulas (III)⁴
Definition (Assignment)
Given an interpretation I , an assignment s assigns a value from the
domain D to each variable in V i.e. s : V → D.
We extend this assignment s to all terms inductively by saying that
1. if I maps the n-ary function letter f to the function f I , and
2. if terms t1, . . . , tn have been assigned concrete values

a1, . . . , an ∈ D
then we can assign value f I (a1, . . . , an) ∈ D to the term
f (t1, . . . , tn).
An assignment s of values to variables is also commonly known as
an environment and we denote by s[x 7→ a] the environment that
maps x ∈ V to a (and any other variable y ∈ V to s(y)).

Remark: The interpretation I is fixed before we interpret a formula,
but the assignment s will vary as we interpret the quantifiers.

⁴Non-examinable



Semantics of FOL Formulas (IV)⁵
Definition (Satisfaction)
Given an interpretation I and an assignment s : V → D
1. any wff which is a nullary predicate letter A is satisfied if and

only if the interpretation in I of A is T;
2. suppose we have a wff P of the form A(t1 . . . tn), where A is

interpreted as relation A I and t1, . . . , tn have been assigned
concrete values a1, . . . , an by s. Then P is satisfied if and only if
(a1, . . . , an) ∈ A I ;

3. any wff of the form ∀x.P is satisfied if and only if P is satisfied
with respect to assignment s[x 7→ a] for all a ∈ D;

4. any wff of the form ∃x.P is satisfied if and only if P is satisfied
with respect to assignment s[x 7→ a] for some a ∈ D;

5. any wffs of the form P ∨ Q, P ∧ Q, P → Q, P ↔ Q, ¬P are
satisfied according to the truth-tables for each connective (e.g.
P ∨ Q is satisfied if and only if P is satisfied or Q is satisfied).

⁵Non-examinable



Example: Assignment and Satisfaction⁶
Consider the wff ϕ:

R(f(x), g(y, a))

where x, y ∈ V i.e. are variables and a is a nullary function symbol
i.e. a constant.
Given the interpretation I where

▶ the domain D is the set of integers Z
▶ a I ≡ −5

▶ R I ≡< (less than)
▶ f I ≡ − (minus)
▶ g I ≡ + (addition)

and the environment s[x 7→ 3, y 7→ 2] then under this interpretation
and assignment:

ϕ I ≡ −3 < 2 +−5 = −3 < −3

is not satisfied.

⁶Non-examinable
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Example: Satisfaction & Validity⁷

Consider the following statement:

∀x y. R(x, y) → ∃z.R(x, z) ∧ R(z, y)

1. Is it satisfiable?
2. Is it valid?

Answers:
1. Yes: Domain is the real numbers and R is interpreted as the

less-than relation.
2. No: Domain? Intepretation for R?

⁷Non-examinable
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Semantics of FOL Formulas (V)⁸
Definition (Entailment)
We write I |=s P to mean that wff P is satisfied by interpretation I and
assignment s.

We say that the wffs P1, P2, . . . , Pn entail wff Q and write

P1, P2, . . . , Pn |= Q

if, for any interpretation I and assignment s for which I |=s Pi for all i,
we also have I |=s Q.
As with propositional logic, we must ensure that our inference rules
are valid. That is, if

P1 P2 . . . Pn

Q

then we must have P1, P2, . . . , Pn |= Q.
⁸Non-examinable



More Introduction Rules

We now consider the additional natural deduction rules for FOL.

The introduction rules for the quantifiers are:

▶ Universal quantification: Provided that x0 is not free in the
assumptions,

P [x0/x]

∀x. P
(allI)

▶ Existential quantification:

P [t/x]

∃x.P
(exI)



Existential Elimination

∃x.P

[P[x0/x]]
...
Q

Q
(exE)

Provided x0 does not occur in Q or any assumption other than
P [x0/x] on which the derivation of Q from P [x0/x] depends.



Universal Elimination

Specialisation rule:
∀x.P
P[t/x]

(spec)

An alternative universal elimination rule is allE:

∀x.P

[P[t/x]]
...
Q

Q
(allE)



Example Proof

Prove that ∃y. P(y) is true, given that ∀x. P(x) holds.

∀x.P(x)
P(a)

(spec)

∃y.P(y)
(exI)

Side note: semantically, we implicitly use the fact that our domain of
discourse is non-empty. It doesn’t matter what a is, but we have to
have something.
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Why the side conditions on allI and exE?

A (non-)proof of: ⊢ x > 5 → ∀x. x > 5:

x > 5 ⊢ x > 5
(assumption)

x > 5 ⊢ ∀x. x > 5
(allI)

⊢ x > 5 → ∀x. x > 5
(impI)

But it is clearly false that if a particular x is greater than 5, then
every x is greater than 5. We have “proven” that x > 5, but not for
an arbitrary x, only for the particular x we had already made an
assumption about.
Exercise: Give a non-proof for exE.

Machine assistance: Isabelle keeps track of which variable names are
allowed where, so we can only apply the rules in a sound way.
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Example Proof (II)

Prove that ∀x.Q(x) is true, given ∀x. P(x) and (∀x. P(x) → Q(x)).

∀x.P(x) → Q(x)

∀x.P(x)
[P(y) → Q(y)]1 [P(y)]2

Q(y)
(mp)

Q(y)
(allE2)

Q(y)
(allE1)

∀x.Q(x)
(allI)

Note: Subscripts are attached to rules being applied and the
assumption(s) that they introduce e.g. allE1 and [P(y) → Q(y)]1.



Problem (III)

Prove that Loses(me) given that
1. (∃x.Cheats(x)) → ∀x. Loses(x)
2. (∀x.Cheats(x) → Loses(x)) → Loses(me)

assumption2

assumption1

[Cheats(y)]1
∃x. Cheats(x)

(exI)

∀x. Loses(x)
(mp)

Loses(y)
(spec)

Cheats(y) → Loses(y)
(impI1)

∀x. Cheats(x) → Loses(x)
(allI)

Loses(me)
(mp)



FOL in Isabelle/HOL

Isabelle’s HOL object logic is richer than the FOL so far presented.
One difference is that all variables, terms and formulas have types.
The type language is built using
▶ base types such as bool (the type of truth values) and nat (the

type of natural numbers).
▶ type constructors such as list and set which are written postfix,

e.g., nat list or nat set.
▶ function types written using ⇒; e.g.

nat× nat ⇒ nat

which is a function taking two arguments of type nat and
returning an object of type nat.

▶ type variables such as ′a, ′b etc. These give rise to polymorphic
types such as ′a ⇒ ′a.



FOL in Isabelle/HOL (II)

▶ Consider the mathematical predicate a = b mod n. We could
formalise this operator as:

definition mod :: "int ⇒ int ⇒ int ⇒ bool"
where "mod a b n ≡ ∃k. a = k ∗ n+ b"

▶ Isabelle performs type inference, allowing us to write:

∀x y n. mod x y n → mod y x n

instead of

∀(x :: int) (y :: int) (n :: int). mod x y n → mod y x n



Recall: Propositional L-System Sequent Calculus Rules

Γ, P ⊢ P
(assumption)

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∧ Q
(conjI)

Γ, P,Q ⊢ R

Γ, P ∧ Q ⊢ R
(e conjE)

Γ ⊢ P

Γ ⊢ P ∨ Q
(disjI1)

Γ ⊢ Q

Γ ⊢ P ∨ Q
(disjI2)

Γ, P ⊢ R Γ,Q ⊢ R

Γ, P ∨ Q ⊢ R
(e disjE)

Γ,A ⊢ B

Γ ⊢ A → B
(impI)

Γ ⊢ P Γ,Q ⊢ R

Γ, P → Q ⊢ R
(e impE)

no right-intro rule for⊥ Γ,⊥ ⊢ P
(e FalseE)

Γ, P ⊢ ⊥
Γ ⊢ ¬P

(notI)
Γ ⊢ P

Γ,¬P ⊢ R
(e notE)

Γ ⊢ ¬P ∨ P
(excluded_middle)

and also:

Γ ⊢ P Γ, P ⊢ Q

Γ ⊢ Q
(cut)

Note: e someRule is short for erule someRule.



FOL L-System Sequent Calculus Rules

Γ ⊢ P[x0/x]

Γ ⊢ ∀x. P
(allI)

Γ, P[t/x] ⊢ Q

Γ, ∀x.P ⊢ Q
(e allE t)

Γ,∀x.P, P[t/x] ⊢ Q

Γ, ∀x.P ⊢ Q
(f spec t)

Γ ⊢ P[t/x]

Γ ⊢ ∃x.P
(r exI t)

Γ, P[x0/x] ⊢ Q

Γ, ∃x.P ⊢ Q
(e exE)

Γ, ∀x.¬P ⊢ ⊥
Γ ⊢ ∃x.P

(exCIF)

▶ Rule prefixes: e = erule, f = frule, r = rule
▶ x0 is some variable not free in hypotheses or conclusion. Isabelle

automatically picks fresh names (to ensure soundness!)
▶ When t suffix is used above (e.g., as in ”e allE t”), then the term t can be

explicitly specified in Isabelle method using a variant of the existing method.
e.g., apply (erule_tac x="t" in allE).

▶ Rule exCIF is a variation on the standard Isabelle rule exCI introduced in the
FOL.thy file on the course webpage. It does not exist as an explicit Isabelle
inference rule but can be derived (see FOL.thy).



Example II as a FOL Sequent Proof

P(y) ⊢ P(y)
(assum)

P(y),Q(y) ⊢ Q(y)
(assum)

P(y) → Q(y), P(y) ⊢ Q(y)
(e impE)

P(y) → Q(y), ∀x. P(x) ⊢ Q(y)
(e allE y)

∀x. P(x) → Q(x), ∀x. P(x) ⊢ Q(y)
(e allE y)

∀x. P(x) → Q(x), ∀x. P(x) ⊢ ∀x. Q(x)
(allI)

Note: assum = assumption



Summary

▶ Introduction to First-Order Logic (H&R 2.1-2.4)
▶ Syntax (and Semantics)
▶ Substitution
▶ Natural Deduction rules for quantifiers

▶ Isabelle and First-Order Logic
▶ Defining predicates
▶ A brief look at types
▶ Try FOL.thy on the course webpage in Isabelle.


