
Automated Reasoning

Lecture 9: Inductive Proof (in Isabelle)

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk

Overview

▶ Proof by Induction (in Isabelle)
▶ Inductive Datatypes
▶ Mathematical Induction
▶ Structural Recursion and Induction
▶ Challenges in Inductive Proof Automation

A Summation Problem

What is
1 + 2 + 3 + . . .+ 999 + 1000 ?

Is there a general formula for any n?

Gauss came up with the solution:

1 + 2 + . . .+ n =
n(n+ 1)

2

How can we prove this? (Automatically?)
▶ First-order proof search is (generally) unable to prove this

A Summation Problem

What is
1 + 2 + 3 + . . .+ 999 + 1000 ?

Is there a general formula for any n?

Gauss came up with the solution:

1 + 2 + . . .+ n =
n(n+ 1)

2

How can we prove this? (Automatically?)
▶ First-order proof search is (generally) unable to prove this

A Summation Problem

What is
1 + 2 + 3 + . . .+ 999 + 1000 ?

Is there a general formula for any n?

Gauss came up with the solution:

1 + 2 + . . .+ n =
n(n+ 1)

2

How can we prove this? (Automatically?)
▶ First-order proof search is (generally) unable to prove this

Proof by Induction
To prove ∀n. P n:{
(base) prove P 0
(step) for all n, assume P n and prove P (n+ 1)

To prove ∀n. 1 + 2 + . . .+ n =
n(n+ 1)

2
:

(base): 0 =
0 ∗ 1
2

, by computation.

(step): assume the formula holds for n, and:

1 + 2 + . . .+ n+ (n+ 1)
= (1 + 2 + . . .+ n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (apply induction hypothesis)

= . . .

=
(n+ 1)(n+ 2)

2

as required.

Proof by Induction
To prove ∀n. P n:{
(base) prove P 0
(step) for all n, assume P n and prove P (n+ 1)

To prove ∀n. 1 + 2 + . . .+ n =
n(n+ 1)

2
:

(base): 0 =
0 ∗ 1
2

, by computation.

(step): assume the formula holds for n, and:

1 + 2 + . . .+ n+ (n+ 1)
= (1 + 2 + . . .+ n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (apply induction hypothesis)

= . . .

=
(n+ 1)(n+ 2)

2

as required.

Proof by Induction
To prove ∀n. P n:{
(base) prove P 0
(step) for all n, assume P n and prove P (n+ 1)

To prove ∀n. 1 + 2 + . . .+ n =
n(n+ 1)

2
:

(base): 0 =
0 ∗ 1
2

, by computation.

(step): assume the formula holds for n, and:

1 + 2 + . . .+ n+ (n+ 1)
= (1 + 2 + . . .+ n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (apply induction hypothesis)

= . . .

=
(n+ 1)(n+ 2)

2

as required.

Proof by Induction
To prove ∀n. P n:{
(base) prove P 0
(step) for all n, assume P n and prove P (n+ 1)

To prove ∀n. 1 + 2 + . . .+ n =
n(n+ 1)

2
:

(base): 0 =
0 ∗ 1
2

, by computation.

(step): assume the formula holds for n, and:

1 + 2 + . . .+ n+ (n+ 1)
= (1 + 2 + . . .+ n) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (apply induction hypothesis)

= . . .

=
(n+ 1)(n+ 2)

2

as required.

Inductively Defined Data
Induction is especially useful for dealing with Inductive Datatypes

Inductive Datatypes are freely generated by some constructors:
datatype nat = Zero | Succ nat
datatype ′a list = Nil | Cons "′a" "′a list"
datatype ′a tree = Leaf "′a" | Node "′a" "′a tree" "′a tree"

Free datatypes are those for which terms are only equal if they are
syntactically identical e.g. Succ (Succ Zero) ̸= Succ Zero.

Some values:
{

Succ (Succ Zero) i.e. ”2”
Cons Zero (Cons Zero Nil) i.e. ”[0, 0]”

Non-freely generated datatypes. Contrast the above with the
integers, for example, defined with the constructors Zero, Succ and
Pred, where Zero and Succ are as for the natural numbers but
Pred is the predecessor function.
In this case, Pred (Succ n) = Suc (Pred n) = n, for instance.

Inductively Defined Data
Induction is especially useful for dealing with Inductive Datatypes

Inductive Datatypes are freely generated by some constructors:
datatype nat = Zero | Succ nat
datatype ′a list = Nil | Cons "′a" "′a list"
datatype ′a tree = Leaf "′a" | Node "′a" "′a tree" "′a tree"

Free datatypes are those for which terms are only equal if they are
syntactically identical e.g. Succ (Succ Zero) ̸= Succ Zero.

Some values:
{

Succ (Succ Zero) i.e. ”2”
Cons Zero (Cons Zero Nil) i.e. ”[0, 0]”

Non-freely generated datatypes. Contrast the above with the
integers, for example, defined with the constructors Zero, Succ and
Pred, where Zero and Succ are as for the natural numbers but
Pred is the predecessor function.
In this case, Pred (Succ n) = Suc (Pred n) = n, for instance.

Inductively Defined Data
Induction is especially useful for dealing with Inductive Datatypes

Inductive Datatypes are freely generated by some constructors:
datatype nat = Zero | Succ nat
datatype ′a list = Nil | Cons "′a" "′a list"
datatype ′a tree = Leaf "′a" | Node "′a" "′a tree" "′a tree"

Free datatypes are those for which terms are only equal if they are
syntactically identical e.g. Succ (Succ Zero) ̸= Succ Zero.

Some values:
{

Succ (Succ Zero) i.e. ”2”
Cons Zero (Cons Zero Nil) i.e. ”[0, 0]”

Non-freely generated datatypes. Contrast the above with the
integers, for example, defined with the constructors Zero, Succ and
Pred, where Zero and Succ are as for the natural numbers but
Pred is the predecessor function.
In this case, Pred (Succ n) = Suc (Pred n) = n, for instance.

Inductively Defined Data
Induction is especially useful for dealing with Inductive Datatypes

Inductive Datatypes are freely generated by some constructors:
datatype nat = Zero | Succ nat
datatype ′a list = Nil | Cons "′a" "′a list"
datatype ′a tree = Leaf "′a" | Node "′a" "′a tree" "′a tree"

Free datatypes are those for which terms are only equal if they are
syntactically identical e.g. Succ (Succ Zero) ̸= Succ Zero.

Some values:
{

Succ (Succ Zero) i.e. ”2”
Cons Zero (Cons Zero Nil) i.e. ”[0, 0]”

Non-freely generated datatypes. Contrast the above with the
integers, for example, defined with the constructors Zero, Succ and
Pred, where Zero and Succ are as for the natural numbers but
Pred is the predecessor function.
In this case, Pred (Succ n) = Suc (Pred n) = n, for instance.

datatype — the general case

datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1
| …
| Ck τk,1 . . . τk,nk

▶ Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
▶ Distinctness: Ci . . . ̸= Cj . . . if i ̸= j
▶ Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

datatype — the general case

datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1
| …
| Ck τk,1 . . . τk,nk

▶ Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t

▶ Distinctness: Ci . . . ̸= Cj . . . if i ̸= j
▶ Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

datatype — the general case

datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1
| …
| Ck τk,1 . . . τk,nk

▶ Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
▶ Distinctness: Ci . . . ̸= Cj . . . if i ̸= j

▶ Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =
(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

datatype — the general case

datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1
| …
| Ck τk,1 . . . τk,nk

▶ Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
▶ Distinctness: Ci . . . ̸= Cj . . . if i ̸= j
▶ Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

datatype — the general case

datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1
| …
| Ck τk,1 . . . τk,nk

▶ Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
▶ Distinctness: Ci . . . ̸= Cj . . . if i ̸= j
▶ Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

Recursive Functions on Inductively Defined Data

Functions can defined by recursion on “structurally smaller” data.
primrec length :: "′a list ⇒ nat"
where
"length Nil = Zero" |
"length (Cons x xs) = Succ (length xs)"

primrec append :: "′a list ⇒ ′a list ⇒ ′a list"
where
"append Nil ys = ys" |
"append (Cons x xs) ys = Cons x (append xs ys)"

primrec reverse :: "′a list ⇒ ′a list"
where
"reverse Nil = Nil" |
"reverse (Cons x xs) = append (reverse xs) (Cons x Nil)"

Recursive Functions on Inductively Defined Data

Functions can defined by recursion on “structurally smaller” data.
primrec length :: "′a list ⇒ nat"
where
"length Nil = Zero" |
"length (Cons x xs) = Succ (length xs)"

primrec append :: "′a list ⇒ ′a list ⇒ ′a list"
where
"append Nil ys = ys" |
"append (Cons x xs) ys = Cons x (append xs ys)"

primrec reverse :: "′a list ⇒ ′a list"
where
"reverse Nil = Nil" |
"reverse (Cons x xs) = append (reverse xs) (Cons x Nil)"

Recursive Functions on Inductively Defined Data

Functions can defined by recursion on “structurally smaller” data.
primrec length :: "′a list ⇒ nat"
where
"length Nil = Zero" |
"length (Cons x xs) = Succ (length xs)"

primrec append :: "′a list ⇒ ′a list ⇒ ′a list"
where
"append Nil ys = ys" |
"append (Cons x xs) ys = Cons x (append xs ys)"

primrec reverse :: "′a list ⇒ ′a list"
where
"reverse Nil = Nil" |
"reverse (Cons x xs) = append (reverse xs) (Cons x Nil)"

Proof by Structural Induction
Properties of structurally recursive functions can be proved by
structural induction.

To show ∀xs. P xs:{
prove P Nil
for all x, xs, assume P xs to prove P (Cons x xs)

To prove: append xs (append ys zs) = append (append xs ys) zs:
(base)
append Nil (append ys zs) = append ys zs

= append (append Nil ys) zs

(step) append (Cons x xs) (append ys zs)
= Cons x (append xs (append ys zs))
= Cons x (append (append xs ys) zs) by IH
= append (Cons x (append xs ys)) zs
= append (append (Cons x xs) ys) zs

In practice: start with the equation to be proved as the goal, and rewrite
both sides to be equal.

Proof by Structural Induction
Properties of structurally recursive functions can be proved by
structural induction.

To show ∀xs. P xs:{
prove P Nil
for all x, xs, assume P xs to prove P (Cons x xs)

To prove: append xs (append ys zs) = append (append xs ys) zs:

(base)
append Nil (append ys zs) = append ys zs

= append (append Nil ys) zs

(step) append (Cons x xs) (append ys zs)
= Cons x (append xs (append ys zs))
= Cons x (append (append xs ys) zs) by IH
= append (Cons x (append xs ys)) zs
= append (append (Cons x xs) ys) zs

In practice: start with the equation to be proved as the goal, and rewrite
both sides to be equal.

Proof by Structural Induction
Properties of structurally recursive functions can be proved by
structural induction.

To show ∀xs. P xs:{
prove P Nil
for all x, xs, assume P xs to prove P (Cons x xs)

To prove: append xs (append ys zs) = append (append xs ys) zs:
(base)
append Nil (append ys zs) = append ys zs

= append (append Nil ys) zs

(step) append (Cons x xs) (append ys zs)
= Cons x (append xs (append ys zs))
= Cons x (append (append xs ys) zs) by IH
= append (Cons x (append xs ys)) zs
= append (append (Cons x xs) ys) zs

In practice: start with the equation to be proved as the goal, and rewrite
both sides to be equal.

Proof by Structural Induction
Properties of structurally recursive functions can be proved by
structural induction.

To show ∀xs. P xs:{
prove P Nil
for all x, xs, assume P xs to prove P (Cons x xs)

To prove: append xs (append ys zs) = append (append xs ys) zs:
(base)
append Nil (append ys zs) = append ys zs

= append (append Nil ys) zs

(step) append (Cons x xs) (append ys zs)
= Cons x (append xs (append ys zs))
= Cons x (append (append xs ys) zs) by IH
= append (Cons x (append xs ys)) zs
= append (append (Cons x xs) ys) zs

In practice: start with the equation to be proved as the goal, and rewrite
both sides to be equal.

Proof by Structural Induction
Properties of structurally recursive functions can be proved by
structural induction.

To show ∀xs. P xs:{
prove P Nil
for all x, xs, assume P xs to prove P (Cons x xs)

To prove: append xs (append ys zs) = append (append xs ys) zs:
(base)
append Nil (append ys zs) = append ys zs

= append (append Nil ys) zs

(step) append (Cons x xs) (append ys zs)
= Cons x (append xs (append ys zs))
= Cons x (append (append xs ys) zs) by IH
= append (Cons x (append xs ys)) zs
= append (append (Cons x xs) ys) zs

In practice: start with the equation to be proved as the goal, and rewrite
both sides to be equal.

Structural induction for our type nat

show P(n)
proof (induction n)

case Zero
...
show ?case

next
case (Succ n)
......
show ?case

qed

Structural induction for our type nat

show P(n)
proof (induction n)

case Zero ≡ let ?case = P(Zero)
...
show ?case

next
case (Succ n)
......
show ?case

qed

Structural induction for our type nat

show P(n)
proof (induction n)

case Zero ≡ let ?case = P(Zero)
...
show ?case

next
case (Succ n) ≡ fix n assume Succ: P(n)
... let ?case = P(Succ n)...
show ?case

qed

Structural induction for list

This is analogous to the one for natural numbers.
show P(xs)
proof (induction xs)

case Nil
...
show ?case

next
case (Cons x xs)
...
show ?case

qed

Well-Founded Induction

Let < be an ordering on a set such that, for all x, there are no
infinite downward chains:

Not allowed: . . . < . . . < x3 < x2 < x1 < x

Such an ordering is called well-founded (or noetherian)

Then, to prove ∀x. P x, it suffices to prove:

∀y. (∀z. z < y → P z) → P y

Specialised to the natural numbers, with the usual less-than
ordering, this is usually called Complete Induction.

Well-Founded Induction

Let < be an ordering on a set such that, for all x, there are no
infinite downward chains:

Not allowed: . . . < . . . < x3 < x2 < x1 < x

Such an ordering is called well-founded (or noetherian)

Then, to prove ∀x. P x, it suffices to prove:

∀y. (∀z. z < y → P z) → P y

Specialised to the natural numbers, with the usual less-than
ordering, this is usually called Complete Induction.

Well-Founded Induction

Let < be an ordering on a set such that, for all x, there are no
infinite downward chains:

Not allowed: . . . < . . . < x3 < x2 < x1 < x

Such an ordering is called well-founded (or noetherian)

Then, to prove ∀x. P x, it suffices to prove:

∀y. (∀z. z < y → P z) → P y

Specialised to the natural numbers, with the usual less-than
ordering, this is usually called Complete Induction.

Theoretical Limitations of Automated Inductive
Proof

Recall L-systems, with left- and right-introduction rules:

Γ, P,Q ⊢ R

Γ, P ∧ Q ⊢ R
(e conjE)

Γ ⊢ P

Γ ⊢ P ∨ Q
(disjI1)

Γ ⊢ P Γ, P ⊢ Q

Γ ⊢ Q
(cut)

This system has two nice properties:
1. Cut elimination: the cut rule is unnecessary
2. Sub-formula property: every cut-free proof only contains

formulas which are sub-formulas of the original goal
Q(t) is a sub-formula of ∀x. Q(x) and ∃x. Q(x), for any t

So can do complete (but possibly non-terminating) proof search.

If we add an induction rule:
Γ ⊢ P(0) Γ, P(n) ⊢ P(n+ 1) n ̸∈ fv(Γ, P)

Γ ⊢ ∀n.P(n)

Then Cut elimination fails!
There are variant rules that bring it back, but the sub-formula property still fails

Theoretical Limitations of Automated Inductive
Proof

Recall L-systems, with left- and right-introduction rules:

Γ, P,Q ⊢ R

Γ, P ∧ Q ⊢ R
(e conjE)

Γ ⊢ P

Γ ⊢ P ∨ Q
(disjI1)

Γ ⊢ P Γ, P ⊢ Q

Γ ⊢ Q
(cut)

This system has two nice properties:
1. Cut elimination: the cut rule is unnecessary
2. Sub-formula property: every cut-free proof only contains

formulas which are sub-formulas of the original goal
Q(t) is a sub-formula of ∀x. Q(x) and ∃x. Q(x), for any t

So can do complete (but possibly non-terminating) proof search.
If we add an induction rule:

Γ ⊢ P(0) Γ, P(n) ⊢ P(n+ 1) n ̸∈ fv(Γ, P)
Γ ⊢ ∀n.P(n)

Then Cut elimination fails!
There are variant rules that bring it back, but the sub-formula property still fails

The Need for Intermediate Lemmas

Practically, the lack of a guarantee of a proof with the sub-formula
property means that we need creative i.e. “intelligent”
generalisation during proofs, or we need to speculate i.e.
conjecture new lemmas.

To prove: reverse (reverse xs) = xs

(base) reverse (reverse Nil) = reverse Nil = Nil

(step) IH: reverse (reverse xs) = xs
Attempt: reverse (reverse (Cons x xs))

= reverse (append (reverse xs) (Cons x Nil))
????

= Cons x xs

We need to speculate a new lemma.

The Need for Intermediate Lemmas

Practically, the lack of a guarantee of a proof with the sub-formula
property means that we need creative i.e. “intelligent”
generalisation during proofs, or we need to speculate i.e.
conjecture new lemmas.

To prove: reverse (reverse xs) = xs

(base) reverse (reverse Nil) = reverse Nil = Nil

(step) IH: reverse (reverse xs) = xs
Attempt: reverse (reverse (Cons x xs))

= reverse (append (reverse xs) (Cons x Nil))
????

= Cons x xs

We need to speculate a new lemma.

The Need for Intermediate Lemmas

Practically, the lack of a guarantee of a proof with the sub-formula
property means that we need creative i.e. “intelligent”
generalisation during proofs, or we need to speculate i.e.
conjecture new lemmas.

To prove: reverse (reverse xs) = xs

(base) reverse (reverse Nil) = reverse Nil = Nil

(step) IH: reverse (reverse xs) = xs
Attempt: reverse (reverse (Cons x xs))

= reverse (append (reverse xs) (Cons x Nil))
????

= Cons x xs

We need to speculate a new lemma.

The Need for Intermediate Lemmas

Practically, the lack of a guarantee of a proof with the sub-formula
property means that we need creative i.e. “intelligent”
generalisation during proofs, or we need to speculate i.e.
conjecture new lemmas.

To prove: reverse (reverse xs) = xs

(base) reverse (reverse Nil) = reverse Nil = Nil

(step) IH: reverse (reverse xs) = xs
Attempt: reverse (reverse (Cons x xs))

= reverse (append (reverse xs) (Cons x Nil))
????

= Cons x xs

We need to speculate a new lemma.

The Need for Intermediate Lemmas

Practically, the lack of a guarantee of a proof with the sub-formula
property means that we need creative i.e. “intelligent”
generalisation during proofs, or we need to speculate i.e.
conjecture new lemmas.

To prove: reverse (reverse xs) = xs

(base) reverse (reverse Nil) = reverse Nil = Nil

(step) IH: reverse (reverse xs) = xs
Attempt: reverse (reverse (Cons x xs))

= reverse (append (reverse xs) (Cons x Nil))
????

= Cons x xs

We need to speculate a new lemma.

A New Lemma
In this case, it turns out that we need:

reverse (append xs ys) = append (reverse ys) (reverse xs)

(which is proved by induction, and needs another lemma)

Now we can proceed:
(step) IH: reverse (reverse xs) = xs
Attempt:

reverse (reverse (Cons x xs))
= reverse (append (reverse xs) (Cons x Nil))
= append (reverse(Cons x Nil)) (reverse (reverse xs)) by lemma
= append (append (reverse Nil) (Cons x Nil)) (reverse (reverse xs))
= append (append Nil (Cons x Nil)) (reverse (reverse xs))
= append (Cons x Nil) (reverse (reverse xs))
= Cons x (append Nil (reverse (reverse xs))
= Cons x (reverse (reverse xs))
= Cons x xs by IH

A New Lemma
In this case, it turns out that we need:

reverse (append xs ys) = append (reverse ys) (reverse xs)

(which is proved by induction, and needs another lemma)

Now we can proceed:
(step) IH: reverse (reverse xs) = xs
Attempt:

reverse (reverse (Cons x xs))
= reverse (append (reverse xs) (Cons x Nil))
= append (reverse(Cons x Nil)) (reverse (reverse xs)) by lemma
= append (append (reverse Nil) (Cons x Nil)) (reverse (reverse xs))
= append (append Nil (Cons x Nil)) (reverse (reverse xs))
= append (Cons x Nil) (reverse (reverse xs))
= Cons x (append Nil (reverse (reverse xs))
= Cons x (reverse (reverse xs))
= Cons x xs by IH

Another approach

We got stuck trying to prove:

reverse (append (reverse xs) (Cons x Nil)) = Cons x xs

under the assumption that reverse (reverse xs) = xs

What if we rewrite the RHS backwards by the IH, to get the new
goal:

reverse (append (reverse xs) (Cons x Nil)) = Cons x (reverse (reverse xs))

Maybe this can be proved by induction?

Not quite (try it and see!); need to generalise and prove, for any
ys:

reverse (append ys (Cons x Nil)) = Cons x (reverse ys)

(A special case of the lemma speculated earlier)

Another approach

We got stuck trying to prove:

reverse (append (reverse xs) (Cons x Nil)) = Cons x xs

under the assumption that reverse (reverse xs) = xs

What if we rewrite the RHS backwards by the IH, to get the new
goal:

reverse (append (reverse xs) (Cons x Nil)) = Cons x (reverse (reverse xs))

Maybe this can be proved by induction?

Not quite (try it and see!); need to generalise and prove, for any
ys:

reverse (append ys (Cons x Nil)) = Cons x (reverse ys)

(A special case of the lemma speculated earlier)

Another approach

We got stuck trying to prove:

reverse (append (reverse xs) (Cons x Nil)) = Cons x xs

under the assumption that reverse (reverse xs) = xs

What if we rewrite the RHS backwards by the IH, to get the new
goal:

reverse (append (reverse xs) (Cons x Nil)) = Cons x (reverse (reverse xs))

Maybe this can be proved by induction?

Not quite (try it and see!); need to generalise and prove, for any
ys:

reverse (append ys (Cons x Nil)) = Cons x (reverse ys)

(A special case of the lemma speculated earlier)

Challenges in Automating Inductive Proofs
Theoretically, and practically, to do inductive proofs, we need:
▶ Lemma speculation
▶ Generalisation

Techniques (other than ”Get the user to do it”):
▶ Boyer-Moore approach

roughly the approach described here (implemented in ACL2)
▶ Rippling, “Productive Use of Failure” (Bundy and Ireland, 1996),

Higher Order Rippling in IsaPlanner (Dixon and Fleuriot, 2004)
▶ Up-front speculation:

e.g. “maybe this binary function is associative?”
▶ Cyclic proofs (search for a circular proof, and afterwards prove it is

well-founded)
▶ Only doing a few cases (0, 1, ..., 6)
▶ Can machine learning help?

e.g. Machine Learning for Automated Inductive Theorem Proving
(Jiang, Papapanagiotou and Fleuriot, 2019)

Summary

▶ Proof by Induction (in Isabelle)
▶ Natural number induction
▶ Inductive Datatypes and Structural Induction (H&R 1.4.2)
▶ The automation of Mathematical Induction by Bundy (see AR

webpage).
▶ The need for generalisation and lemma speculation

