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Higher-Order Logic (HOL)

In HOL, we represent sets and predicates by functions, often
denoted by lambda abstractions.
Definition (Lambda Abstraction)
Lambda abstractions are terms that denote functions directly by
the rules which define them, e.g. the square function is λx. x ∗ x.
This is a way of defining a function without giving it a name:

f(x) ≡ x ∗ x vs f ≡ λx. x ∗ x

We can use lambda abstractions exactly as we use ordinary
function symbols. E.g. (λx. x ∗ x) 3 = 3 ∗ 3 = 9.
See β-reduction later in the lecture.



Higher-Order Functions

Using λ-notation, we can think about functions as individual
objects.
E.g., we can define functions which map from and to other
functions.

Example
The K-combinator maps some x to a function which sends any y to
x.

λx. λy. x thus, e.g. (λx. λy. x) 3 = λy. 3

Example
The composition function maps two functions to their
composition:

λf. λg. λx. f (g x)



Representation of Logic in HOL I

▶ Types bool, ind (individuals) and α ⇒ β primitive. All others
defined from these.

▶ Two primitive (families of) functions:

equality (=α) : α ⇒ α ⇒ bool
implication (→) : bool ⇒ bool ⇒ bool

All other functions defined using this, lambda abstraction and
application.

▶ Distinction between formulas and terms is dispensed with:
formulas are just terms of type bool.

▶ Predicates are represented by functions α ⇒ bool.
Sets are represented as predicates.



Representation of Logic in HOL II
▶ True is defined as:

⊤ ≡ (λx.x) = (λx.x)

▶ Universal quantification as function equality:

∀x. ϕ ≡ (λx. ϕ) = (λx.⊤) .

This works for x of any type: bool, ind ⇒ bool, ...
▶ Therefore, we can quantify over functions, predicates and

sets.
▶ Conjunction and disjunction are defined:

P ∧ Q ≡ ∀R.(P → Q → R) → R
P ∨ Q ≡ ∀R.(P → R) → (Q → R) → R

▶ Define natural numbers (N), integers (Z), rationals (Q), reals
(R), complex numbers (C), vector spaces, manifolds, ...



Isabelle/HOL

Higher-Order Logic is the underlying logic of Isabelle/HOL, the
theorem prover we are using.

The axiomatisation is slightly different to the one described on the
previous slides, and a bit more powerful (but we won’t be delving
into this).

We are interested in Isabelle/HOL from a functional programming
and logic standpoint.
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HOL = Higher-Order Logic

HOL = Functional Programming + Logic

HOL has
▶ datatypes
▶ recursive functions
▶ logical operators

HOL is a programming language!

Higher-order = functions are values, too!
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Isabelle/HOL Types

Basic syntax (as a BNF grammar):

τ ::=

(τ )
| bool | nat | int | … base types
| ’a | ’b | … type variables
| τ ⇒ τ functions
| τ × τ pairs
| τ list lists
| τ set sets
| … user-defined types

Convention: τ1 ⇒ τ2 ⇒ τ3 ≡ τ1 ⇒ (τ2 ⇒ τ3)
A formula is simply a term of type bool.
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Isabelle/HOL Terms

Terms can be formed as follows:

▶ Function application: f t
is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.

If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .

Examples: sin π, plus x y
▶ Function abstraction: λx. t

is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t

is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t
is the function with parameter x and result t

,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.

Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Terms can be formed as follows:
▶ Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

▶ Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

Note: λx1.λx2. . . . λxn. t is usually denoted by λx1 x2 . . . xn. t



Isabelle/HOL Terms

Basic syntax:

t ::=

(t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)

| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)

| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application

| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction

| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y

h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



Isabelle/HOL Terms

Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| … lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.



β-reduction

The computation rule of the λ-calculus is the replacement of
formal by actual parameters:

(λx. t) u = t[u/x]

where t[u/x] is “t with u substituted for x”.

Example: (λx. x + 5) 3 = 3 + 5

▶ The step from (λx. t) u to t[u/x] is called β-reduction.
▶ Isabelle performs β-reduction automatically.
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Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: τ means “t is a well-typed term of type τ”.

t :: τ1 ⇒ τ2 u :: τ1
t u :: τ2
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Type inference

Isabelle automatically computes the type of each variable in a
term.

This is called type inference.

In the presence of overloaded functions (functions with multiple
types) this is not always possible.

User can help with type annotations inside the term.

Examples f (x::nat)
4::real
g (A::real set)
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Currying

Process of transforming a function that takes multiple arguments
into:
▶ one that takes just a single argument, and
▶ returns another function if any arguments are still needed.

Typing:
▶ Curried: f :: τ1 ⇒ τ2 ⇒ τ

▶ Tupled: f’ :: τ1 × τ2 ⇒ τ

Advantage:

Currying allows partial application
f a1 :: τ2 ⇒ τ where a1 :: τ1

So, e.g. if plus :: nat ⇒ nat ⇒ nat then plus 10 :: nat ⇒ nat



Currying

Process of transforming a function that takes multiple arguments
into:
▶ one that takes just a single argument, and
▶ returns another function if any arguments are still needed.

Typing:
▶ Curried: f :: τ1 ⇒ τ2 ⇒ τ

▶ Tupled: f’ :: τ1 × τ2 ⇒ τ

Advantage:

Currying allows partial application
f a1 :: τ2 ⇒ τ where a1 :: τ1

So, e.g. if plus :: nat ⇒ nat ⇒ nat then plus 10 :: nat ⇒ nat



Currying

Process of transforming a function that takes multiple arguments
into:
▶ one that takes just a single argument, and
▶ returns another function if any arguments are still needed.

Typing:
▶ Curried: f :: τ1 ⇒ τ2 ⇒ τ

▶ Tupled: f’ :: τ1 × τ2 ⇒ τ

Advantage:

Currying allows partial application
f a1 :: τ2 ⇒ τ where a1 :: τ1

So, e.g. if plus :: nat ⇒ nat ⇒ nat then plus 10 :: nat ⇒ nat



Predefined syntactic sugar

▶ Infix: +, -, *, #, @, …

▶ Mixfix: if _ then _ else _, case _ of , …

Prefix binds more strongly than infix:
! f x + y ≡ (f x) + y ̸≡ f (x + y) !

Enclose if and case in parentheses:
! (if _ then _ else _) !
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Example: Type bool

datatype bool = True | False

Predefined functions:
∧, ∨, −→, . . . :: bool ⇒ bool ⇒ bool

A formula is a term of type bool

if-and-only-if: = or ↔
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datatype nat = 0 | Suc nat
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Predefined functions: +, *, … :: nat ⇒ nat ⇒ nat

! Numbers and arithmetic operations are overloaded:
0, 1, 2, … :: ’a, + :: ’a ⇒ ’a ⇒ ’a

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z
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More on Isabelle/HOL

If you are really keen, look at the chapter “Higher-Order Logic” in
the “logics” document in the Isabelle documentation.
Or the file src/HOL/HOL.thy in the Isabelle installation.
Exercise (only if you are interested!): why can’t Russell’s paradox
happen in HOL?



Summary

▶ General introduction to Higher-Order Logic
▶ Types and Terms in Isabelle/HOL
▶ As usual, see recommended reading on AR Lecture Schedule
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