
Automated Reasoning

Lecture 14: Linear Temporal Logic II

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk

Overview

▶ LTL in Isabelle
▶ Linear Temporal Logic over finite traces: LTLf
▶ A soft semantics for LTLf

Recall: Specifications

We are interested in specifying behaviours of systems over time.
▶ Use Temporal Logic

Specifications are built from:
1. Primitive properties of individual states

e.g., “is on”, “is off”, “is active”, “is in region”, “is at position”;
2. propositional connectives ∧,∨,¬,→;
3. and temporal connectives: e.g.,

▶ At all times, the system is not simultaneously reading and
writing.

▶ If a request signal is asserted at some time, a corresponding
grant signal will be asserted within 10 time units.

▶ The robot’s position will eventually be at 1 distance unit from
the shelf.

Linear Temporal Logic
▶ We introduced a commonly used syntax for LTL in the last

lecture but in this lecture will use a variant.
▶ This is inspired in part by an existing formalisation in the AFP.
▶ Easier to provide a “soft” semantics (for our discussion of LTL

over finite traces).

Our syntax for LTL formulas ϕ:

ϕ ::= true | false | p | ¬p | ϕ∧ϕ | ϕ∨ϕ | Xϕ | Fϕ | Gϕ | ϕWϕ | ϕMϕ

Note: We have an explicitly negated atom so a literal is an atom or
the negation of an atom.
Temporal operator:
▶ X — Next
▶ F — Future; Eventually
▶ G — Globally; Always
▶ W —Weak Until
▶ M —Strong Release

LTL – Informal Semantics for W and M

▶ Recall: The semantics of ϕ1 Wϕ2 does not require a state to be
reached for which ϕ2 holds, unlike ϕ1 Uϕ2. Thus, we have:

ϕ1 Wϕ2 ≡ ϕ1 Uϕ2 ∨ Gϕ1

▶ ϕMψ holds if there is a future position where both ϕ becomes
true, and ψ holds for all positions prior to and including that i.e.
ϕ ‘(strongly) releases’ ψ.
▶ It is equivalent to ¬(¬ϕW¬ψ).
▶ Thus M is the dual of W.

Note: See previous lecture for the informal meaning of the other
operators.

LTL in Isabelle: Syntax

▶ Deep embedding: the syntax is defined as an explicit datatype
in Isabelle/HOL.

▶ Note the use of the type variable “'a”, thus e.g. prop(q) stands
for atom q while nprop(q) stands for ¬q.

▶ Negation is not taken as primitive (and thus has no constructor).

LTL in Isabelle: Not operation

▶ (Some of the) Dualities given in the previous lecture are now
used to define negation.

▶ Negation is defined using primitive recursion (we could have
used primrec instead of fun).

▶ We can easily prove by induction that not(notϕ) = ϕ.

LTL Semantics in Isabelle: Satisfaction by Path
Satisfaction: π |=i ϕ — “path at position i satisfies formula ϕ”

▶ LTL semantics is defined as a primitive recursive function
(relation) over our datatype.

▶ type_synonym 'a word = nat ⇒ 'a
▶ π:: nat ⇒ 'a set, i.e. π(i) is the set of atoms that is true (in

state) at position i of path π.

LTL Semantics in Isabelle: Satisfaction by Path

▶ Alternative semantics for temporal operators are easily derived
as theorems:

LTL Equivalences

▶ The expected equivalences follow:

LTL over Finite Traces

▶ Many real-word problems involve finite traces or paths rather
than infinite ones, especially when dealing with terminating
processes.
▶ Example: trajectory constraints in AI planning and, in our

research, constraining the finite trajectory being learnt by a
neural network by asking it to e.g. avoid particular regions or
reach specific points.

▶ LTLf is defined on finite traces.
▶ It uses the same syntax as LTL.
▶ Some changes needed to our understanding of the operators e.g.

what is the meaning of X⊥ at the last position?
▶ How can we formalise finite paths/traces in Isabelle/HOL?

LTLf Semantics in Isabelle: “Computational Definition”

▶ We can formalise a semantics recursively over paths, which are
represented as lists.

▶ This gives a more computational way of specifying the
semantics, which can then be extracted faithfully as code (e.g.
Ocaml or Haskell) and executed!

▶ We prove that this semantics is equivalently expressed in terms
path suffixes (next slide).

LTLf Semantics in Isabelle: ith Suffix of Path

▶ Semantics on terms of ith suffix of the path (see previous
lecture) also uses a list but requires other list operations.

▶ The function drop n xs drops the first n elements of list xs.
▶ How do we deal with the end of the path? More generally, does

¬Xϕ ≡ X ¬ϕ still hold?

LTLf Negation in Isabelle
Introduce a Weak Next operator:

that will enable us to define negation:

▶ It then follows that notf(notf(ϕ)) = ϕ.
▶ Most of the usual LTL equivalences are recovered.

From Discrete to RobustSemantics

▶ Recall: We are interested in specifying behaviours of systems
over time.

▶ Informally, can we find a way of specifying such behaviours
rigorously and then incorporating them into the training of a
neural network to ensure it (attempts) to satisfy them?
▶ Issue: The semantics of LTL and LTLf are boolean so either a

formula is satisfied or it is not. So, they are not robust (and
“learning”-friendly).

▶ Can we formulate a soft (robust) semantics that will
approximate the standard one and thus enable us to quantify by
how much a LTLf constraint is violated during learning i.e.
figure out the constraint-related loss?

▶ Moreover, we would like this function to be differentiable so
that we can use it to minimise the constraint loss during back
propagation (cf. Mark’s Guest Lecture).

Some Soft Functions

▶ We formalise soft versions of the functions max and minimum:

▶ Each of these soft functions takes an additional smoothing
parameter γ.

▶ We show that as γ → 0, ⊓γ → max, ⊔γ → min, and that they
are differentiable for γ > 0.

A Simple Soft LTLf Semantics in Isabelle

▶ This is a simple formalisation but it illustrates how we can
move from a boolean to a real-valued semantics:

▶ We have a literal translation of the standard LTLf semantics we
presented earlier, with ∧ and ∨ replaced by our softmax ⊓γ and
softmin ⊔γ functions respectively.

Is our Soft Semantics Sound?
Yes! We can formally prove:
▶ with γ = 0, it is exactly the standard boolean semantics:

▶ but more importantly, we have:

where, mathematically, the theorem states:
lim
γ→0

(π |=sγ ϕ) = 0 ⇐⇒ π |= ϕ

▶ We thus have a well-defined semantic function
▶ In principle it can be used to implement the loss with respect to

LTL constraints during learning by a neural network.
▶ It will be rather limited and excruciatingly slow though; so a

much more sophisticated formalisation is needed for practical
use.

▶ Next Lecture: An overview of how this can be adapted and used
for rigorous, constrained neural learning.

Summary

▶ Linear Temporal Logic (H&R 3.2)
▶ Syntax and Semantics: see also

https://www.isa-afp.org/sessions/ltl.
▶ Linear Temporal Logic over finite traces: LTLf

▶ See, for example: Linear Temporal Logic and Linear Dynamic
Logic on Finite Traces by De Giacomo and Vardi,
https://www.cs.rice.edu/~vardi/papers/ijcai13.pdf

▶ A soft semantics for LTLf
▶ See our paper: Constrained Training of Neural Networks via

Theorem Proving,
https://ceur-ws.org/Vol-3311/paper2.pdf and
https://arxiv.org/pdf/2207.03880

▶ See also: Elaborating on Learned Demonstrations with Temporal
Logic Specifications by Innes and Ramamoorhy,
https://arxiv.org/pdf/2002.00784

https://www.isa-afp.org/sessions/ltl
https://www.cs.rice.edu/~vardi/papers/ijcai13.pdf
https://ceur-ws.org/Vol-3311/paper2.pdf
https://arxiv.org/pdf/2207.03880
https://arxiv.org/pdf/2002.00784

