Automated Reasoning

Lecture 14: Linear Temporal Logic II

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk

Overview

» LTL in Isabelle
» Linear Temporal Logic over finite traces: LTLy
» A soft semantics for LTL¢

Recall: Specifications

We are interested in specifying behaviours of systems over time.

» Use Temporal Logic

Specifications are built from:

1. Primitive properties of individual states
“Ke 9 K. 9 (K. . 9 K. . . 9 K. LR »
eg., 1son’, 1s off”, “is active”, “is in region, 1s at position’;
2. propositional connectives A, V, =1, —;

3. and temporal connectives: e.g.,

> At all times, the system is not simultaneously reading and
writing.

> If a request signal is asserted at some time, a corresponding
grant signal will be asserted within 10 time units.

» The robot’s position will eventually be at 1 distance unit from
the shelf.

Linear Temporal Logic

» We introduced a commonly used syntax for LTL in the last
lecture but in this lecture will use a variant.

» This is inspired in part by an existing formalisation in the AFP.
> Easier to provide a “soft” semantics (for our discussion of LTL
over finite traces).

Our syntax for LTL formulas ¢:
¢ = true| false | p| =p| NG [9V | XP | Fo | Go [W | oM

Note: We have an explicitly negated atom so a literal is an atom or
the negation of an atom.

Temporal operator:
» X — Next
» F — Future; Eventually
> G — Globally; Always
» W —Weak Until
> M —Strong Release

LTL - Informal Semantics for W and M

» Recall: The semantics of ¢; W ¢ does not require a state to be
reached for which ¢ holds, unlike ¢; U ¢2. Thus, we have:

P1 Wy =¢1Upa VG

> @M1 holds if there is a future position where both ¢ becomes
true, and v holds for all positions prior to and including that i.e.
¢ ‘(strongly) releases’ 1.

> It is equivalent to —(—¢W—)).
» Thus M is the dual of W.

Note: See previous lecture for the informal meaning of the other
operators.

LTL in Isabelle: Syntax

datatype (atoms 1tl: 'a) 1tl =

True_1ltl

False 1ltl

Prop 1tl 'a

NotProp_ltl 'a

And_1tl "'a ltl" "'a ltl"

Or 1tl "'a 1tl" "'a 1tl"
Next_1tl "'a 1tl"
Eventually 1tl "'a 1tl"
Always 1tl "'a 1tl"

WUntil 1tl "'a 1tl" "'a 1tl"
SRelease ltl "'a 1tl" "'a 1t1l"

("true")

("false")
("prop'(_*)")
("nprop* (_')")

(" and " [82,82] 81)
(" or " [81,81] 80)
("X _" [88] 87)

("F " [88] 87)

("G " [88] 87)

("_ W _" [84,84] 83)
("_ M _" [84,84] 83)

» Deep embedding: the syntax is defined as an explicit datatype
in Isabelle/HOL.

» Note the use of the type variable “'a”, thus e.g. prop(q) stands
for atom g while nprop(q) stands for —gq.

» Negation is not taken as primitive (and thus has no constructor).

LTL in Isabelle: Not operation

fun Not 1tl :: "'a 1tl = 'a 1tl" ("not " [85] 85)
where

"not (true) = false"
| "not (false) = true"
| "not (prop(q)) = nprop(q)"
| "not (nprop(q)) = prop(q)"
| "not (¢ and %) = (not ¢) or (not #)"
| "not (¢ or) = (not ¢) and (not)"
|
|
|
|
|

"not (X ¢) = X (not ¢)"

"not (F ¢) = G (not ¢)

"not (G ¢) = F (not)"

"not (¢ W %) = (not ¢) M (not)"
"not (¢ M %) = (not ¢) W (not %)

> (Some of the) Dualities given in the previous lecture are now
used to define negation.

» Negation is defined using primitive recursion (we could have
used primrec instead of fun).

» We can easily prove by induction that not(not ¢) = ¢.

LTL Semantics in Isabelle: Satisfaction by Path

Satisfaction: 7 | ¢ — “path at position i satisfies formula ¢”

primrec position semantics 1tl :: "['a set word, nat,

where

@M X6

€ 6

=i true = True"

=i false = False"

i prop(q) = (g € = i)"
i nprop(q) = (q ¢ = i)"

pand ¢ = (7 [Fi ¢ A 7 [F1 ¥)"
or ¢ = (r |Fi ¢ VvV w i)"

'a 1tl] = bool"

(S

F

0= (3. j=ivl A 7 | 9"

¢ = (21 7] @)

¢ = (Vi2i. 7] @)

W= ((Vi2i. 7] @) V (3i2i. 7 |Fj ¢ A (VK. i S kA k<] —
M= (3321, 7 |=j @ A (Vk. i S kKA Kk<j — 7 [k)"

_" [80,80,80] 80)

Tk @))”

» LTL semantics is defined as a primitive recursive function
(relation) over our datatype.

P> type_synonym 'a word = nat =

'a

> 7:: nat = 'a set,ie. m(i) is the set of atoms that is true (in
state) at position i of path 7.

LTL Semantics in Isabelle: Satisfaction by Path

> Alternative semantics for temporal operators are easily derived
as theorems:

lemma neXt: "7 |Fi X ¢ = 7 |E(i+1) "
lemma eventually "l F @ = (31 T+ 3))"
lemma always: "W‘Fl G ¢ = (V] \F(i +3) o)

lemma weak:
T L W= ((Vi. 7 [F(i+]) @) V
(3j. m |=(i+3) ¥ A (Vk<i. 7 [=(itk) ©)))"
lemma strong release:
TEL e My = (3. © [E(i+]) ¢ A (Vk < j. 7 E(i+k))"

LTL Equivalences

» The expected equivalences follow:

lemma "7 |Fi G (¢ and ¥) = (7 |1 G ¢ and G)"

lemma "7 =i F (¢ or ¢) = (7w |F1 F ¢ or F ¢)"

lemma "7 |Fi o W (¢ or ¢) = (7 |F1 (6 W ¢) or (o W 3))"
lemma "7 |Fi (¢ and ¥) Wo = (7 |F1i (¢ W o) and (¢p W o))"
lemma "7 =i G (F (G ¢)) =7 |Fi F (G)"

lemma "7 |Fi F (G (F ¢)) =7 |Fi G (F)"

lemma "7 |Fi G (F ¢ or F ¢) =7 |1 G (F ¢) or G (F)"

LTL over Finite Traces

» Many real-word problems involve finite traces or paths rather
than infinite ones, especially when dealing with terminating
processes.

» Example: trajectory constraints in Al planning and, in our
research, constraining the finite trajectory being learnt by a
neural network by asking it to e.g. avoid particular regions or
reach specific points.

» LTLfis defined on finite traces.

» It uses the same syntax as LTL.
» Some changes needed to our understanding of the operators e.g.
what is the meaning of X | at the last position?

» How can we formalise finite paths/traces in Isabelle/HOL?

LTL;Semantics in Isabelle: “Computational Definition”

P> We can formalise a semantics recursively over paths, which are
represented as lists.

function semantics 1tl f :: "['a set list, 'a ltl] = bool" (" k " [80,80]1 80)
where
"[1 E ¢ = False"
| "(se#r) = true = True"
| "(so#r) = false = False"
| "(se#r) = prop(q) = (q € so)"
| "(se#r) |= nprop(q) = (q & se)"
| "(se#r) | ¢ and @ = ((se#n) |= ¢ A (so#m) |)"
| "(se#r) | p or ¥ = ((sebm) E ¢V (se#r) E ¥)"
| (o) | X p= 7k g
| "(so#r) £ F o = (s o) EoVvrEF
| "(se#r) = G p = ((se#tm) E v A (fr [] then True else 7 = G ¢))"
| "(so#tr) | ¢ W= ((((se#m) =) A (1f m = [] then True else @ | » W ¢)) V (sofr) E ¢)"
| "(se#r) = ¢ M ¥ = (((se#r) = ¢ and ¢) vV (if = = [] then False else (se¢#7) = v A 7™k ¢ M ¥))"

by pat completeness auto
termination by size change

» This gives a more computational way of specifying the
semantics, which can then be extracted faithfully as code (e.g.
Ocaml or Haskell) and executed!

» We prove that this semantics is equivalently expressed in terms
path suffixes (next slide).

LTLfSemantics in Isabelle: ith Suffix of Path

» Semantics on terms of ith suffix of the path (see previous
lecture) also uses a list but requires other list operations.

function semantics_ltl_f :: "['a set list, 'a 1tl] = bool" ("_ |- _" [86,80] 80)
where
"[1 ¢ = False"
| "(se#r) | true = True"
| "(se#r) = false = False"
| "(se#r) | prop(q) = (q € se)"
| "(se#r) | nprop(a) = (q £ se)"
| "(se#n) | ¢ and ¢ = ((se#r) = ¢ A (se#tm) E ¢)"
| "(se#r) | ¢ or ¢ = ((so#n) = ¢ V (se#tm) E ¢)"
| “(sofm) £ X o =7 | o
| "(se#r) = F ¢ = (3] < length (se#r). drop j (se#7) E ©)"
| "(se#r) £ G = (Vi < length (se#r). drop j (so#r) £)"
| "(se#n) = © W = (V] < length (se#m). drop j (se#n) = ¢ V (3k < j. drop k (se#7) | o
| "(se#n) = ¢ M ¥ = (3] < length (se#m). drop j (se#n) = ¢ A (Vk < j. drop k (se#m) | o

by paticompleteness auto
termination by size change

)"
)"

» The function drop n xs drops the first n elements of list xs.

» How do we deal with the end of the path? More generally, does
—X¢ = X —¢ still hold?

LTLfNegation in Isabelle

Introduce a Weak Next operator:

definition WeakNext 1tl :: "'a 1tl = 'a 1tl" ("Xu " [88]
where "WeakNext 1tl ¢ = not X (not ¢)"

that will enable us to define negation:

fun Notf 1tl :: "'a 1tl = 'a 1tl" ("notf " [85] 85)
where
"nots (true) = false"
| "nots (false) = true"
| "nots (prop(q)) = nprop(q)"
| "nots (nprop(q)) = prop(q)"
| "nots (¢ and @) = (notf ¢) or (notf ¥)"
| "nots (¢ or) = (nots ¢) and (nots)"
| "nots (X ¢) = Xu (not)"
| "nots (F ¢) = G (nots ¢)"
| "nots (G ¢) = F (nots »)"
| "nots (@ W ¢) = (notf ¢) M (nots)"
| "nots (¢ M) = (nots ¢) W (nots)"

» It then follows that not¢(nots(¢)) = ¢.

» Most of the usual LTL equivalences are recovered.

87)

From Discrete to RobustSemantics

P Recall: We are interested in specifying behaviours of systems
over time.

» Informally, can we find a way of specifying such behaviours
rigorously and then incorporating them into the training of a
neural network to ensure it (attempts) to satisfy them?

» Issue: The semantics of LTL and LTLf are boolean so either a
formula is satisfied or it is not. So, they are not robust (and
“learning”-friendly).

» Can we formulate a soft (robust) semantics that will
approximate the standard one and thus enable us to quantify by
how much a LTLy constraint is violated during learning i.e.
figure out the constraint-related loss?

» Moreover, we would like this function to be differentiable so
that we can use it to minimise the constraint loss during back
propagation (cf. Mark’s Guest Lecture).

Some Soft Functions

» We formalise soft versions of the functions max and minimum:

fun Max gamma :: "real = real = real = real" (" [] " [82,82] 81) where
“(a [Ty b) = (if v < 0 then max a b

else v * In (exp (a / 7) + exp (b / 7)))"
fun Min gamma :: "real = real = real = real" (" || " [81,81] 80) where
"(a |ly b) = (if v < 0 then min a b

else -7 * 1n (exp (-a / 7) + exp (-b / 7)))"

» Each of these soft functions takes an additional smoothing
parameter 7.

» We show that as v — 0, M, — max, LI, — min, and that they
are differentiable for v > 0.

A Simple Soft LTLfSemantics in Isabelle

» This is a simple formalisation but it illustrates how we can
move from a boolean to a real-valued semantics:

function soft_semantics_1tl_f :: "['a set list, real, 'a ltl] = real" ("_ |=s_ _" [80,80,80]1 80)
where

" (so#m)):5"“ prop(q) = (if (q € se) then 0 else 1)"

(softm 7 nprop(q) = (if (q ¢ se) then @ else 1)"
(so#tm 7 p and ¢ = ((so#r) Esv @) [y ((se#r) Esy ¥)"
] ((sufr Esv) Ly ((se#n) sy ¢)"
(se#tm Esy
(so#m ((50#7) Esv @) Ly (x Esy F o)
" (se#m) (se#m) sy @) [Ty (if 7 = [] then @ else 7 sy G)"

@
£y
SEEEE

"(se#m) Esy o W U =
((((se#m) [=sv @) [l (if = = [1 then 0 else 7 sy o W) Ly ((se#r) Esy 9))"
| "(so#n) sy o M ¢ =
((se#m) f=sv @ and) [ly (if 7 = [] then 1 else ((se#7) s %) [(7 sy @ M)"
by pat_completeness auto
termination by size change

» We have a literal translation of the standard LTL; semantics we
presented earlier, with A and V replaced by our softmax M., and
softmin LI, functions respectively.

Is our Soft Semantics Sound?
Yes! We can formally prove:
> with v = 0, it is exactly the standard boolean semantics:

lemma "(7 @ ¢ = 0) = (7 E)"
» but more importantly, we have:

lemma "((Ay. 7™ Esy ¢) —0— 0) = (7 E ¢)"

where, mathematically, the theorem states:

lim (7 Eyy ¢) =0<= 7 ¢
v—0

» We thus have a well-defined semantic function

» In principle it can be used to implement the loss with respect to
LTL constraints during learning by a neural network.

» It will be rather limited and excruciatingly slow though; so a
much more sophisticated formalisation is needed for practical
use.

» Next Lecture: An overview of how this can be adapted and used

for rigorous, constrained neural learning.

Summary

» Linear Temporal Logic (H&R 3.2)
» Syntax and Semantics: see also
https://www.isa-afp.org/sessions/1tl.
» Linear Temporal Logic over finite traces: LTLy
» See, for example: Linear Temporal Logic and Linear Dynamic

Logic on Finite Traces by De Giacomo and Vardi,
https://www.cs.rice.edu/~vardi/papers/ijcail3.pdf

» A soft semantics for LTL¢

» See our paper: Constrained Training of Neural Networks via
Theorem Proving,
https://ceur-ws.org/Vol-3311/paper2.pdf and
https://arxiv.org/pdf/2207.03880

» See also: Elaborating on Learned Demonstrations with Temporal
Logic Specifications by Innes and Ramamoorhy,
https://arxiv.org/pdf/2002.00784

https://www.isa-afp.org/sessions/ltl
https://www.cs.rice.edu/~vardi/papers/ijcai13.pdf
https://ceur-ws.org/Vol-3311/paper2.pdf
https://arxiv.org/pdf/2207.03880
https://arxiv.org/pdf/2002.00784

