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Overview

▶ Linear Temporal Logic
▶ Some motivation
▶ Syntax
▶ Semantics
▶ Equivalences



Specifications
We are interested in specifying behaviours of systems over time.
▶ Use Temporal Logic

Specifications are built from:
1. Primitive properties of individual states

e.g., “is on”, “is off”, “is active”, “is in region”, “is at position”;
2. propositional connectives ∧,∨,¬,→;
3. and temporal connectives: e.g.,

▶ At all times, the system is not simultaneously reading and
writing.

▶ If a request signal is asserted at some time, a corresponding
grant signal will be asserted within 10 time units.

▶ The robot’s position will eventually be at 1 distance unit from
the shelf.

The exact set of temporal connectives differs across temporal logics.
Logics can differ in how they treat time:
▶ Linear time vs. Branching time

These differ in reasoning about non-determinism.
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LTL – Syntax
LTL = Linear(-time) Temporal Logic

Assume some set Atom of atomic propositions

Syntax of LTL formulas ϕ:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where p ∈ Atom.

Pronunciation:
▶ Xϕ — neXt ϕ
▶ Fϕ — Future ϕ; Eventually ϕ
▶ Gϕ — Globally ϕ; Always ϕ
▶ ϕUψ — ϕ Until ψ

Other common connectives: W (weak until), R (release).
Precedence high-to-low: (X, F,G,¬), (U), (∧,∨),→.
▶ E.g. Write Fp ∧ Gq → pU r instead of ((Fp) ∧ (Gq)) → (pU r).



Example: Trajectory Specification

F(∥p− o2∥ = 0 ∧ F(∥p− o1∥ = 0 ∧ F(∥p− o4∥ = 0 ∧ F(∥p− o3∥ = 0))))



LTL – Informal Semantics

LTL formulas are evaluated at a position i along a path π through
the system (a path is a sequence of states connected by transitions)

▶ An atomic p holds if p is true the state at position i.
▶ The propositional connectives ¬,∧,∨,→ have their usual

meanings.
▶ Semantics is also commonly given in terms of suffixes of paths

(words).
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LTL – Informal Semantics

Meaning of LTL connectives:
▶ Xϕ holds if ϕ holds at the next position;
▶ Fϕ holds if there exists a future position where ϕ holds;
▶ Gϕ holds if, for all future positions, ϕ holds;
▶ ϕUψ holds if there is a future position where ψ holds, and ϕ

holds for all positions prior to that.
▶ ϕRψ holds at a position if ψ holds for ever from that position

onwards or ϕ holds at some future position, and ψ holds from
the current position to up to and including when ϕ holds
▶ It is equivalent to ¬(¬ϕU¬ψ).
▶ Thus R is the dual of U.

This will be made more formal in the next few slides.



LTL – Formal Semantics: Transition Systems and Paths

Definition (Transition System)
A transition system (or model) M = ⟨S,→, L⟩ consists of:

S a finite set of states
→ ⊆ S× S transition relation

L : S → P(Atom) a labelling function

such that ∀s1 ∈ S. ∃s2 ∈ S. s1 → s2
Note: Atom is a fixed set of atomic propositions, P(Atom) is the
powerset of Atom.

Thus, L(s) is the set of atomic propositions that is true in state s.

Definition (Path)
A path π in a transition system M = ⟨S,→, L⟩ is an infinite
sequence of states s0, s1, ... such that ∀i ≥ 0. si → si+1.
Paths are written as: π = s0 → s1 → s2 → ...
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LTL – Formal Semantics: Satisfaction by Path

Satisfaction: π |=i ϕ — “path at position i satisfies formula ϕ”
π |=i ⊤
π ̸|=i ⊥
π |=i p iff p ∈ L(si)
π |=i ¬ϕ iff π ̸|=i ϕ
π |=i ϕ ∧ ψ iff π |=i ϕ and π |=i ψ
π |=i ϕ ∨ ψ iff π |=i ϕ or π |=i ψ
π |=i ϕ→ ψ iff π |=i ϕ implies π |=i ψ
π |=i X ϕ iff π |=i+1 ϕ
π |=i F ϕ iff ∃j ≥ i. π |=j ϕ
π |=i G ϕ iff ∀j ≥ i. π |=j ϕ
π |=i ϕ1 U ϕ2 iff ∃j ≥ i. π |=j ϕ2 and ∀k ∈ {i..j− 1}. π |=k ϕ1

Note: π ̸|=i ψ means not π |=i ψ. Also, the expected equivalences of FOL hold for
the formulae on the RHS of the definitions e.g. ϕ implies ψ ≡ (not ϕ) or ψ and
not ∃i.ϕ ≡ ∀i. notϕ.



LTL – Formal Semantics: Alternative Satisfaction by Path
Alternatively, we can define π |= ϕ using the notion of ith suffix
πi = si → si+1 → ... of a path π = s0 → s1 → ....

For example, the alternative definition of satisfaction for G would
be:

π |= G ϕ iff ∀j ≥ 0. πj |= ϕ

instead of
π |=0 G ϕ iff ∀j ≥ 0. π |=j ϕ

What about π |= X ϕ?

▶ π |=i ϕ is better for understanding, and needed for past-time
operators.

▶ π |= ϕ is needed for the semantics of branching-time logics, like
CTL (Computation Tree Logic).

▶ Exercise: Work out satisfaction in terms of |= for the other
connectives.



Expanding Formulas

We can expand formulas by using the LTL semantics: e.g.

π |=0 FG at_table ≡ ∃i ≥ 0.∀j ≥ i. at_table ∈ L(sj)



LTL – A Few Practical Specification Pattern
1. π |=i G invariant

invariant is true for all future positions
∀j ≥ i. π |=j invariant
∀j ≥ i. invariant ∈ L(sj)

2. π |=i G ¬(read ∧ write)
In all future positions, it is not the case that read and write
∀j ≥ i. read ̸∈ L(sj) ∨ write ̸∈ L(sj)

3. π |=i G(request → Fgrant)
At every position in the future, a request implies that there

exists a future point where grant holds.
∀j ≥ i. request ∈ L(sj) implies ∃k ≥ j. grant ∈ L(sk).

4. π |=i G(request → (request U grant))
At every position in the future, a request implies that there

exists a future point where grant holds, and request holds up
until that point.
∀j ≥ i. request ∈ L(sj) implies
∃k ≥ j. grant ∈ L(sk) and ∀l ∈ {j, k− 1}. request ∈ L(sl).
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Weak Until (W) and Release (R)

▶ The semantics of ϕ1Wϕ2 does not require a state to be reached
for which ϕ2 holds, unlike ϕ1 Uϕ2. Thus, it is defined as:

ϕ1Wϕ2
def
= ϕ1 Uϕ2 ∨ Gϕ1

▶ The Release operator R is defined as follows:

ϕ1 Rϕ2
def
= ¬(¬ϕ2 U¬ϕ1)

Its intuitive interpretation is as follows: ϕ1 Rϕ2 holds for a path
if ϕ2 always holds, a requirement that is released as soon as ϕ1
becomes valid.

▶ Exercise: Work out the semantics of the Weak Until and Release
operators. How do they compare to that of the (Strong) Until
operator?



LTL Equivalences 1

ϕ ≡ ψ
def
= ∀M.∀π ∈ M.∀i. π |=i ϕ↔ π |=i ψ

Dualities from Propositional Logic:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Dualities from LTL:

¬Xϕ ≡ X¬ϕ ¬Gϕ ≡ F¬ϕ ¬Fϕ ≡ G¬ϕ

¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ

Distributive laws:

G(ϕ ∧ ψ) ≡ Gϕ ∧ Gψ F(ϕ ∨ ψ) ≡ Fϕ ∨ Fψ
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LTL Equivalences 2

Inter-definitions:

Fϕ ≡ ¬G¬ϕ Gϕ ≡ ¬F¬ϕ Fϕ ≡ ⊤ U ϕ Gϕ ≡ ⊥ R ϕ

Idempotency:

FFϕ ≡ Fϕ GGϕ ≡ Gϕ

Weak and strong until:

ϕ U ψ ≡ ϕW ψ ∧ Fψ

Some more surprising equivalences:

GFGϕ ≡ FGϕ FGFϕ ≡ GFϕ G(Fϕ ∨ Fψ) ≡ GFϕ ∨ GFψ
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Summary

▶ Linear Temporal Logic (H&R 3.2)
▶ Syntax
▶ Semantics
▶ A Few Specification Patterns
▶ Equivalences

▶ Exercise: Prove the equivalences in the previous slides using
the semantics of LTL (try this for both the given semantics and
the one involving the ith suffix of a path).


