Automated Reasoning

Lecture 13: Linear Temporal Logic I

Jacques Fleuriot jdf@inf.ed.ac.uk

Overview

Linear Temporal Logic

Some motivation

Syntax

Semantics

Equivalences

Specifications

We are interested in specifying behaviours of systems over time.

Use Temporal Logic

Specifications

We are interested in specifying behaviours of systems over time.

Use Temporal Logic

Specifications are built from:

- 1. Primitive properties of individual states *e.g.*, "is on", "is off", "is active", "is in region", "is at position";
- **2**. propositional connectives $\land, \lor, \neg, \rightarrow$;
- 3. and temporal connectives: e.g.,
 - At **all times**, the system is not simultaneously *reading* and *writing*.
 - If a *request* signal is asserted **at some time**, a corresponding grant signal will be asserted within 10 time units.
 - The robot's *position* will **eventually** be at **1 distance unit** from the shelf.

Specifications

We are interested in specifying behaviours of systems over time.

Use Temporal Logic

Specifications are built from:

1. Primitive properties of individual states

e.g., "is on", "is off", "is active", "is in region", "is at position";

- **2**. propositional connectives $\land, \lor, \neg, \rightarrow$;
- 3. and temporal connectives: e.g.,
 - At **all times**, the system is not simultaneously *reading* and *writing*.
 - If a *request* signal is asserted **at some time**, a corresponding *grant* signal will be asserted **within 10 time units**.
 - The robot's *position* will **eventually** be at **1 distance unit** from the shelf.

The exact set of temporal connectives differs across temporal logics. Logics can differ in how they treat time:

Linear time vs. Branching time

These differ in reasoning about non-determinism.

LTL – Syntax

LTL = Linear(-time) Temporal Logic

Assume some set Atom of atomic propositions

Syntax of LTL formulas ϕ :

 $\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \to \phi \mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{G} \phi \mid \phi \mathbf{U} \phi$

where $p \in Atom$.

Pronunciation:

- $\blacktriangleright \mathbf{X}\phi \mathrm{neXt}\;\phi$
- ▶ $\mathbf{F}\phi$ Future ϕ ; Eventually ϕ
- $\blacktriangleright \mathbf{G}\phi \text{Globally }\phi\text{; Always }\phi$
- $\blacktriangleright \phi \mathbf{U} \psi \phi \text{ Until } \psi$

Other common connectives: **W** (weak until), **R** (release). Precedence high-to-low: $(\mathbf{X}, \mathbf{F}, \mathbf{G}, \neg), (\mathbf{U}), (\land, \lor), \rightarrow$.

► E.g. Write $\mathbf{F}p \wedge \mathbf{G}q \rightarrow p \mathbf{U}r$ instead of $((\mathbf{F}p) \wedge (\mathbf{G}q)) \rightarrow (p \mathbf{U}r)$.

Example: Trajectory Specification

 $\mathbf{F}(\|p - o_2\| = 0 \land \mathbf{F}(\|p - o_1\| = 0 \land \mathbf{F}(\|p - o_4\| = 0 \land \mathbf{F}(\|p - o_3\| = 0))))$

LTL formulas are evaluated at a position *i* along a path π through the system (a path is a sequence of states connected by transitions)

LTL formulas are evaluated at a position *i* along a path π through the system (a path is a sequence of states connected by transitions)

- An atomic p holds if p is true the state at position i.
- ► The propositional connectives ¬, ∧, ∨, → have their usual meanings.
- Semantics is also commonly given in terms of suffixes of paths (words).

LTL – Informal Semantics

Meaning of LTL connectives:

- $\mathbf{X}\phi$ holds if ϕ holds at the next position;
- **F** ϕ holds if there exists a future position where ϕ holds;
- $\mathbf{G}\phi$ holds if, for all future positions, ϕ holds;
- φUψ holds if there is a future position where ψ holds, and φ holds for all positions prior to that.
- φ**R**ψ holds at a position if ψ holds for ever from that position onwards or φ holds at some future position, and ψ holds from the current position to up to and including when φ holds
 - It is equivalent to $\neg(\neg\phi \mathbf{U}\neg\psi)$.
 - Thus **R** is the dual of **U**.

This will be made more formal in the next few slides.

LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)

A transition system (or model) $\mathcal{M} = \langle S, \rightarrow, L \rangle$ consists of:

S	a finite set of states
$\rightarrow \subseteq S \times S$	transition relation
$L: S \to \mathcal{P}(Atom)$	a labelling function

such that $\forall s_1 \in S$. $\exists s_2 \in S$. $s_1 \rightarrow s_2$

Note: *Atom* is a fixed set of atomic propositions, $\mathcal{P}(Atom)$ is the powerset of *Atom*.

LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)

A transition system (or model) $\mathcal{M} = \langle S, \rightarrow, L \rangle$ consists of:

S	a finite set of states
$\rightarrow \subseteq S \times S$	transition relation
$L: S \to \mathcal{P}(Atom)$	a labelling function

such that $\forall s_1 \in S$. $\exists s_2 \in S$. $s_1 \rightarrow s_2$

Note: *Atom* is a fixed set of atomic propositions, $\mathcal{P}(Atom)$ is the powerset of *Atom*.

Thus, L(s) is the set of atomic propositions that is true in state s.

LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)

A transition system (or model) $\mathcal{M} = \langle S, \rightarrow, L \rangle$ consists of:

S	a finite set of states
$\rightarrow \subseteq S \times S$	transition relation
$L: S \to \mathcal{P}(Atom)$	a labelling function

such that $\forall s_1 \in S$. $\exists s_2 \in S$. $s_1 \rightarrow s_2$

Note: *Atom* is a fixed set of atomic propositions, $\mathcal{P}(Atom)$ is the powerset of *Atom*.

Thus, L(s) is the set of atomic propositions that is true in state s.

Definition (Path)

A *path* π in a transition system $\mathcal{M} = \langle S, \rightarrow, L \rangle$ is an infinite sequence of states s_0, s_1, \dots such that $\forall i \ge 0$. $s_i \rightarrow s_{i+1}$.

Paths are written as: $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$

LTL - Formal Semantics: Satisfaction by Path

Satisfaction: $\pi \models^i \phi$ – "path at position *i* satisfies formula ϕ " $\pi \models^i \top$ $\pi \not\models^i \bot$ $\pi \models^i p$ iff $p \in L(s_i)$ $\pi \models^i \neg \phi \qquad \text{iff } \pi \not\models^i \phi$ $\pi \models^i \phi \land \psi \quad \text{ iff } \pi \models^i \phi \text{ and } \pi \models^i \psi$ $\pi \models^i \phi \lor \psi$ iff $\pi \models^i \phi$ or $\pi \models^i \psi$ $\pi \models^i \phi \to \psi$ iff $\pi \models^i \phi$ implies $\pi \models^i \psi$ $\pi \models^{i} \mathbf{X} \phi$ iff $\pi \models^{i+1} \phi$ $\pi \models^{i} \mathbf{F} \phi$ iff $\exists j \geq i. \pi \models^{j} \phi$ $\pi \models^{i} \mathbf{G} \phi$ iff $\forall j > i. \pi \models^{j} \phi$ $\pi \models^i \phi_1 \mathbf{U} \phi_2$ iff $\exists j > i. \pi \models^j \phi_2$ and $\forall k \in \{i..j-1\}. \pi \models^k \phi_1$

Note: $\pi \not\models^i \psi$ means not $\pi \not\models^i \psi$. Also, the expected equivalences of FOL hold for the formulae on the RHS of the definitions e.g. ϕ implies $\psi \equiv (\text{not } \phi)$ or ψ and not $\exists i.\phi \equiv \forall i. \text{ not } \phi$.

LTL - Formal Semantics: Alternative Satisfaction by Path

Alternatively, we can define $\pi \models \phi$ using the notion of *i*th suffix $\pi^i = s_i \rightarrow s_{i+1} \rightarrow \dots$ of a path $\pi = s_0 \rightarrow s_1 \rightarrow \dots$

For example, the **alternative definition** of satisfaction for **G** would be:

$$\pi \models \mathbf{G} \phi \qquad \text{iff} \qquad \forall j \ge 0. \ \pi^j \models \phi$$

instead of

$$\pi \models^0 \mathbf{G} \phi \qquad \text{iff} \qquad \forall j \ge 0. \ \pi \models^j \phi$$

What about $\pi \models \mathbf{X} \phi$?

- $\pi \models^i \phi$ is better for understanding, and needed for past-time operators.
- $\pi \models \phi$ is needed for the semantics of branching-time logics, like CTL (Computation Tree Logic).
- Exercise: Work out satisfaction in terms of |= for the other connectives.

Expanding Formulas

We can expand formulas by using the LTL semantics: e.g.

$$\pi \models^0 \mathbf{F} \mathbf{G} \text{ at_table} \equiv \exists i \ge 0. \forall j \ge i. at_table \in L(s_j)$$

1. $\pi \models^{i} \mathbf{G}$ invariant

invariant is true for all future positions

 $\forall j \geq i. \ \pi \models^j invariant$

 $\forall j \geq i$. invariant $\in L(s_j)$

1. $\pi \models^{i} \mathbf{G}$ invariant

invariant is true for all future positions

 $\forall j \geq i. \ \pi \models^j invariant$

 $\forall j \geq i. invariant \in L(s_j)$

2. $\pi \models^{i} \mathbf{G} \neg (read \land write)$

In all future positions, it is not the case that *read* and *write* $\forall j \ge i$. *read* $\notin L(s_j) \lor$ *write* $\notin L(s_j)$

1. $\pi \models^{i} \mathbf{G}$ invariant

invariant is true for all future positions

 $\forall j \geq i. \ \pi \models^j invariant$

 $\forall j \geq i. invariant \in L(s_j)$

2. $\pi \models^{i} \mathbf{G} \neg (read \land write)$ In all future positions, it is not the case that *read* and *write* $\forall j \ge i. read \notin L(s_j) \lor write \notin L(s_j)$

3. $\pi \models^{i} \mathbf{G}(request \rightarrow \mathbf{F}grant)$

At every position in the future, a *request* implies that there exists a future point where *grant* holds.

 $\forall j \geq i. \ request \in L(s_j) \ implies \ \exists k \geq j. \ grant \in L(s_k).$

1. $\pi \models^{i} \mathbf{G}$ invariant

invariant is true for all future positions

 $\forall j \geq i. \ \pi \models^j invariant$

 $\forall j \geq i. invariant \in L(s_j)$

2. $\pi \models^i \mathbf{G} \neg (\mathit{read} \land \mathit{write})$

In all future positions, it is not the case that *read* and *write* $\forall j \ge i$. *read* $\notin L(s_j) \lor$ *write* $\notin L(s_j)$

3. $\pi \models^{i} \mathbf{G}(request \rightarrow \mathbf{F}grant)$

At every position in the future, a *request* implies that there exists a future point where *grant* holds.

 $\forall j \geq i. \ request \in L(s_j) \ implies \ \exists k \geq j. \ grant \in L(s_k).$

4. $\pi \models^{i} \mathbf{G}(request \rightarrow (request \, \mathbf{U} \, grant))$

At every position in the future, a *request* implies that there exists a future point where *grant* holds, and *request* holds up until that point.

 $\forall j \geq i. \ request \in L(s_j) \ implies$ $\exists k \geq j. \ grant \in L(s_k) \ and \ \forall l \in \{j, k-1\}. \ request \in L(s_l).$

Weak Until (W) and Release (R)

• The semantics of $\phi_1 \mathbf{W} \phi_2$ does not require a state to be reached for which ϕ_2 holds, unlike $\phi_1 \mathbf{U} \phi_2$. Thus, it is defined as:

$$\phi_1 \, \mathbf{W} \, \phi_2 \stackrel{\text{def}}{=} \phi_1 \, \mathbf{U} \, \phi_2 \lor \mathbf{G} \, \phi_1$$

► The Release operator **R** is defined as follows:

$$\phi_1 \, \mathbf{R} \, \phi_2 \stackrel{\text{def}}{=} \neg (\neg \phi_2 \, \mathbf{U} \, \neg \phi_1)$$

Its intuitive interpretation is as follows: $\phi_1 \mathbf{R} \phi_2$ holds for a path if ϕ_2 always holds, a requirement that is released as soon as ϕ_1 becomes valid.

Exercise: Work out the semantics of the Weak Until and Release operators. How do they compare to that of the (Strong) Until operator?

$$\phi \equiv \psi \stackrel{\text{def}}{=} \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

$$\phi \equiv \psi \stackrel{\text{def}}{=} \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

Dualities from Propositional Logic:

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

$$\phi \equiv \psi \stackrel{\text{def}}{=} \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

Dualities from Propositional Logic:

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

Dualities from LTL:

$$\neg \mathbf{X}\phi \equiv \mathbf{X}\neg\phi \qquad \neg \mathbf{G}\phi \equiv \mathbf{F}\neg\phi \qquad \neg \mathbf{F}\phi \equiv \mathbf{G}\neg\phi$$
$$\neg(\phi \mathbf{U} \psi) \equiv \neg\phi \mathbf{R} \neg\psi$$

$$\phi \equiv \psi \stackrel{\text{def}}{=} \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

Dualities from Propositional Logic:

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

Dualities from LTL:

$$\neg \mathbf{X}\phi \equiv \mathbf{X}\neg\phi \qquad \neg \mathbf{G}\phi \equiv \mathbf{F}\neg\phi \qquad \neg \mathbf{F}\phi \equiv \mathbf{G}\neg\phi$$
$$\neg(\phi \mathbf{U} \psi) \equiv \neg\phi \mathbf{R} \neg\psi$$

Distributive laws:

$$\mathbf{G}(\phi \wedge \psi) \equiv \mathbf{G}\phi \wedge \mathbf{G}\psi \qquad \qquad \mathbf{F}(\phi \vee \psi) \equiv \mathbf{F}\phi \vee \mathbf{F}\psi$$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg\phi \qquad \mathbf{G}\phi \equiv \neg \mathbf{F}\neg\phi \qquad \mathbf{F}\phi \equiv \top \mathbf{U} \ \phi \qquad \mathbf{G}\phi \equiv \bot \ \mathbf{R} \ \phi$$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg \phi$$
 $\mathbf{G}\phi \equiv \neg \mathbf{F}\neg \phi$ $\mathbf{F}\phi \equiv \top \mathbf{U} \phi$ $\mathbf{G}\phi \equiv \bot \mathbf{R} \phi$
Idempotency:

$$\mathbf{FF}\phi \equiv \mathbf{F}\phi \qquad \qquad \mathbf{GG}\phi \equiv \mathbf{G}\phi$$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg \phi \qquad \mathbf{G}\phi \equiv \neg \mathbf{F}\neg \phi \qquad \mathbf{F}\phi \equiv \top \mathbf{U} \ \phi \qquad \mathbf{G}\phi \equiv \bot \ \mathbf{R} \ \phi$$

Idempotency:

$$\mathbf{FF}\phi \equiv \mathbf{F}\phi \qquad \qquad \mathbf{GG}\phi \equiv \mathbf{G}\phi$$

Weak and strong until:

$$\phi \mathbf{U} \psi \equiv \phi \mathbf{W} \psi \wedge \mathbf{F} \psi$$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg \phi \qquad \mathbf{G}\phi \equiv \neg \mathbf{F}\neg \phi \qquad \mathbf{F}\phi \equiv \top \ \mathbf{U} \ \phi \qquad \mathbf{G}\phi \equiv \perp \mathbf{R} \ \phi$$

Idempotency:

$$\mathbf{FF}\phi \equiv \mathbf{F}\phi \qquad \qquad \mathbf{GG}\phi \equiv \mathbf{G}\phi$$

Weak and strong until:

$$\phi \mathbf{U} \psi \equiv \phi \mathbf{W} \psi \wedge \mathbf{F} \psi$$

Some more surprising equivalences:

 $\mathbf{GFG}\phi \equiv \mathbf{FG}\phi \qquad \mathbf{FGF}\phi \equiv \mathbf{GF}\phi \qquad \mathbf{G}(\mathbf{F}\phi \lor \mathbf{F}\psi) \equiv \mathbf{GF}\phi \lor \mathbf{GF}\psi$

Summary

Linear Temporal Logic (H&R 3.2)

- Syntax
- Semantics
- A Few Specification Patterns
- Equivalences

Exercise: Prove the equivalences in the previous slides using the semantics of LTL (try this for both the given semantics and the one involving the *i*th suffix of a path).