Automated Reasoning

Lecture 13: Linear Temporal Logic I

Jacques Fleuriot
jdf@inf.ed.ac.uk

jdf@inf.ed.ac.uk

Overview

» Linear Temporal Logic
» Some motivation
» Syntax
» Semantics
» Equivalences

Specifications
We are interested in specifying behaviours of systems over time.
» Use Temporal Logic

Specifications
We are interested in specifying behaviours of systems over time.

» Use Temporal Logic

Specifications are built from:

1. Primitive properties of individual states
e.g., “is on”, “is off”, “is active”, “is in region”, “is at position”;
2. propositional connectives A, V, =, —;
3. and temporal connectives: e.g.,
> At all times, the system is not simultaneously reading and
writing.
» If a request signal is asserted at some time, a corresponding
grant signal will be asserted within 10 time units.

» The robot’s position will eventually be at 1 distance unit from
the shelf.

Specifications
We are interested in specifying behaviours of systems over time.

» Use Temporal Logic

Specifications are built from:
1. Primitive properties of individual states
e.g., “is on”, “is off”, “is active”, “is in region”, “is at position”;
2. propositional connectives A, V, =, —;
3. and temporal connectives: e.g.,
> At all times, the system is not simultaneously reading and
writing.
» If a request signal is asserted at some time, a corresponding
grant signal will be asserted within 10 time units.
» The robot’s position will eventually be at 1 distance unit from
the shelf.
The exact set of temporal connectives differs across temporal logics.
Logics can differ in how they treat time:
» Linear time vs. Branching time

These differ in reasoning about non-determinism.

LTL - Syntax
LTL = Linear(-time) Temporal Logic
Assume some set Atom of atomic propositions

Syntax of LTL formulas ¢:

pu=p|=d|dVOIdNG| = ¢ |X|Fo|Go|oUs
where p € Atom.

Pronunciation:

> X¢ —neXt ¢

» F¢ — Future ¢; Eventually ¢

> G¢ — Globally ¢; Always ¢

» ¢Uy — ¢ Until ¢
Other common connectives: W (weak until), R (release).
Precedence high-to-low: (X, F, G, —), (U), (A, V), —.

» E.g. Write Fp A Gg — pU rinstead of ((Fp) A (Gq)) — (pUr).

Example: Trajectory Specification

10 Loop Loop Model 1
Model 2

0.8 X 02

06 o1 X ’ 4

04 ¥ 4 : X 04

0.0 02 04 06 08 10

F([[p = o2l = OAF([[p — 1] = OAF([|p — 0al| = OAF(||p — 03]| = 0))))

LTL - Informal Semantics

LTL formulas are evaluated at a position i along a path 7 through
the system (a path is a sequence of states connected by transitions)

LTL - Informal Semantics

LTL formulas are evaluated at a position i along a path 7 through
the system (a path is a sequence of states connected by transitions)

> An atomic p holds if p is true the state at position i.

» The propositional connectives —, A, V, — have their usual
meanings.

> Semantics is also commonly given in terms of suffixes of paths
(words).

LTL - Informal Semantics

Meaning of LTL connectives:
> X¢ holds if ¢ holds at the next position;
» F¢ holds if there exists a future position where ¢ holds;
» G¢ holds if, for all future positions, ¢ holds;
> ¢Uy holds if there is a future position where v holds, and ¢
holds for all positions prior to that.

@Ry holds at a position if ¢ holds for ever from that position
onwards or ¢ holds at some future position, and v holds from
the current position to up to and including when ¢ holds

> It is equivalent to =(—¢U—).

» Thus R is the dual of U.

v

This will be made more formal in the next few slides.

LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)

A transition system (or model) M = (S, —, L) consists of:

S a finite set of states
— CSx%xS transition relation
L:S— P(Atom) alabelling function

such that Vs; € S. Jsp € S. 51 — 9

Note: Atom is a fixed set of atomic propositions, P(Atom) is the
powerset of Atom.

LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)

A transition system (or model) M = (S, —, L) consists of:

S a finite set of states
— CSx%xS transition relation
L:S— P(Atom) alabelling function

such that Vs; € S. Jsp € S. 51 — 9

Note: Atom is a fixed set of atomic propositions, P(Atom) is the
powerset of Atom.

Thus, L(s) is the set of atomic propositions that is true in state s.

LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)
A transition system (or model) M = (S, —, L) consists of:

S a finite set of states
— CSx%xS transition relation
L:S— P(Atom) alabelling function

such that Vs; € S. Jsp € S. 51 — 9

Note: Atom is a fixed set of atomic propositions, P(Atom) is the
powerset of Atom.

Thus, L(s) is the set of atomic propositions that is true in state s.
Definition (Path)

A path 7 in a transition system M = (S, —, L) is an infinite
sequence of states s, s1, ... such that Vi > 0. s; — s;41.

Paths are written as: m = sy — s — S —> ...

LTL - Formal Semantics: Satisfaction by Path

Satisfaction: 7 |= ¢ — “path at position i satisfies formula ¢”

TET
7L
T p iff p € L(s)

T g T

TE 9Ny ff TE ¢gand

TR oV ffmE porm E Y

Tk ¢ —1 iff m | ¢impliesT 'y

TEX¢ iff 7 o

T F¢ iff Ji>inkE ¢

TEG¢ iffVi>inkE ¢

T E ¢1Ugg iff > i.mE ¢pgand Vk € {i.j— 1}. 7 X ¢

Note: 7 [£' 1 means not 7 ' 7). Also, the expected equivalences of FOL hold for
the formulae on the RHS of the definitions e.g. ¢ implies ¢ = (not ¢) or ¢ and
not Ji.¢p = Vi. not ¢.

LTL - Formal Semantics: Alternative Satisfaction by Path

Alternatively, we can define 7 [¢ using the notion of ith suffix
wl =58 — siy1 — ...ofapathm = sy — 51 —

For example, the alternative definition of satisfaction for G would

be:

TEGo iff Vi>0.7 ¢
instead of

7E'Go iff Vi>0.7F ¢
What about 7 X ¢?

» 7 ' ¢ is better for understanding, and needed for past-time
operators.

» 7 E ¢ is needed for the semantics of branching-time logics, like
CTL (Computation Tree Logic).

» Exercise: Work out satisfaction in terms of = for the other
connectives.

Expanding Formulas

We can expand formulas by using the LTL semantics: e.g.

7 E° FG at_table = 3i > 0.Yj > i. at_table € L(s;)

LTL — A Few Practical Specification Pattern

1. m ' G invariant
invariant is true for all future positions
Vj > i w | invariant
Vj > i. invariant € L(s)

LTL — A Few Practical Specification Pattern

1. m ' G invariant
invariant is true for all future positions
Vj > i w | invariant
Vj > i. invariant € L(s)
2. 7 E' G —(read A write)
In all future positions, it is not the case that read and write
Vj > i. read & L(s;) V write & L(s;)

LTL — A Few Practical Specification Pattern

1. m ' G invariant
invariant is true for all future positions
Vj > i. 7 | invariant
Vj > i. invariant € L(s)
2. 7 E' G —(read A write)
In all future positions, it is not the case that read and write
Vj > i. read & L(s;) V write & L(s;)
3. 7 ! G(request — Fgrant)
At every position in the future, a request implies that there
exists a future point where grant holds.
Vj > i. request € L(s;) implies 3k > j. grant € L(s).

LTL — A Few Practical Specification Pattern

1.

[\

w

7 k! G invariant
invariant is true for all future positions
Vj > i. 7 | invariant
Vj > i. invariant € L(s)

. 7 E' G ~(read N write)

In all future positions, it is not the case that read and write
Vj > i. read & L(s;) V write & L(s;)

. 7 E' G(request — Fgrant)

At every position in the future, a request implies that there
exists a future point where grant holds.

Vj > i. request € L(s;) implies 3k > j. grant € L(s).

7 ' G(request — (request U grant))

At every position in the future, a request implies that there
exists a future point where grant holds, and request holds up
until that point.

Vj > i. request € L(s;) implies

Jk > j. grant € L(s) and VI € {j, k — 1}. request € L(s)).

Weak Until (W) and Release (R)

» The semantics of ¢; W ¢2 does not require a state to be reached
for which ¢5 holds, unlike ¢; U ¢5. Thus, it is defined as:

G1Wes & 6 UgavGe

P The Release operator R is defined as follows:

$1R¢y & (=g U—g))

Its intuitive interpretation is as follows: ¢; R ¢2 holds for a path
if ¢9 always holds, a requirement that is released as soon as ¢
becomes valid.

> Exercise: Work out the semantics of the Weak Until and Release
operators. How do they compare to that of the (Strong) Until
operator?

LTL Equivalences 1

def

p=1y = YMVr e MVinE ¢ n

LTL Equivalences 1

def

p=1v = YMVYr e MVintE ¢ < 7

Dualities from Propositional Logic:

~($AY) =V -y ~($V) = =g A~

LTL Equivalences 1

def

p=1v = YMVYr e MVintE ¢ < 7

Dualities from Propositional Logic:

~(PAY) =V ~(oVY)=—dp Ny
Dualities from LTL:
—X¢p =X -G¢p =F—¢ -Fp = G-¢

~(¢Ut)=-¢ R~y

LTL Equivalences 1

def

p=1v = YMVYr e MVintE ¢ < 7

Dualities from Propositional Logic:

~(PAY) =V ~(oVY)=—dp Ny
Dualities from LTL:
—X¢p =X -G¢p =F—¢ -Fp = G-¢

~(¢Ut)=-¢ R~y

Distributive laws:

G(d A) =G AGY F(¢V ¢) = F$ V Fy

LTL Equivalences 2

Inter-definitions:

Fp = -G—¢ G¢p = —F-¢ Fop=TU¢ Gp=1LR¢o

LTL Equivalences 2

Inter-definitions:
Fp = -G—¢ G¢ = —F-¢
Idempotency:

FF$ = F¢

Fo=TUo

GGo = Go

Go=1R¢

LTL Equivalences 2

Inter-definitions:
Fp = -G—¢ G¢ = —F-¢ Fop=TU¢ Gp=1LR¢o
Idempotency:
FF¢ = Fo GG¢ = G¢
Weak and strong until:

dUp=¢ W AFp

LTL Equivalences 2

Inter-definitions:
Fp = -G—¢ G¢ = —F-¢ Fop=TU¢ Gp=1LR¢o
Idempotency:
FFp = F¢ GGy = G9
Weak and strong until:
pUY =9 WY AFY
Some more surprising equivalences:

GFG¢ =FG¢ FGFp=GFp G(F¢V Fy) = GF¢ V GFy

Summary

» Linear Temporal Logic (H&R 3.2)
> Syntax
» Semantics
» A Few Specification Patterns
» Equivalences
P Exercise: Prove the equivalences in the previous slides using
the semantics of LTL (try this for both the given semantics and
the one involving the ith suffix of a path).

