Automated Reasoning

Lecture 3: Natural Deduction and Starting with Isabelle

Jacques Fleuriot jdf@inf.ed.ac.uk

Recap

▶ Last time I introduced **natural deduction**

 \triangleright We saw the rules for \wedge and \vee :

$$
\frac{P}{P \land Q} \text{ (conjI)} \qquad \frac{P}{P \lor Q} \text{ (disjI1)} \qquad \frac{Q}{P \lor Q} \text{ (disjI2)}
$$
\n
$$
\frac{P \land Q}{P} \text{ (conjunct1)} \qquad \frac{P \land Q}{Q} \text{ (conjunct2)}
$$
\n
$$
[P] \qquad [Q]
$$
\n
$$
\vdots \qquad \vdots
$$
\n
$$
\frac{P \lor Q}{R} \qquad R \qquad R \qquad \text{(disjE)}
$$

But what about the other connectives \rightarrow , \leftrightarrow and \neg ?

Rules for Implication

impI forward: If on the assumption that *P* is true, *Q* can be shown to hold, then we can conclude $P \rightarrow Q$.

impl backward: To prove $P \rightarrow Q$, assume *P* is true and prove that *Q* follows.

$$
\frac{P \rightarrow Q \qquad P}{Q} \quad (mp)
$$

The modus ponens rule.

Another possible implication rule is this one. Note: this is not necessarily a standard ND rule but may be useful in mechanized proofs.

Rules for [↔]

These rules are derivable from the rules for \wedge and \rightarrow , using the abbreviation $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$.

Note: In Isabelle, the \leftrightarrow is also denoted by $=$.

Rules for False and Negation

It is convenient to introduce a 0-ary connective *⊥* to represent false. The connective *⊥* has the rules:

no introduction rule for *⊥*

$$
\frac{\perp}{P} \text{ (FalseE)}
$$

Note *⊥* is written False in Isabelle.

Note: we could *define* $\neg P$ to be $P \rightarrow \bot$ Note: In Isabelle, notE is different:

$$
\frac{\neg P \quad P}{R} \quad (\text{not} E)
$$

In this course, you can use either version in your proofs.

Proof

Recall the logic problems from lecture 2: we can now prove

```
((Sunny ∨ Rainy) ∧ ¬Sunny) → Rainy
```
which we previously knew only by semantic means.

Proof

Recall the logic problems from lecture 2: we can now prove

```
((Sunny ∨ Rainy) ∧ ¬Sunny) → Rainy
```
which we previously knew only by semantic means.

The subscripts $[\cdot]_1$ and $[\cdot]_2$ on the assumptions refer to the rule instances (also with subscripts) where they are discharged. This makes the proof easier to follow.

Note: c_1 stands for conjunct₁ and c_2 stands for conjunct₂.

Soundness and Completeness

Theorem (Soundness)

If Q is provable from assumptions P_1, \ldots, P_n , then $P_1, \ldots, P_n \models Q$. This follows because all our rules are *valid*.

Is the converse true?

Can't prove Pierce's law: $((A \rightarrow B) \rightarrow A) \rightarrow A$

Can prove it using the *law of excluded middle*: $\neg P \lor P$.

So far, our proof system is sound and complete for **Intuitionistic Logic**. Intuitionistic logic rejects the law of excluded middle.

Additional Rules for classical reasoning

Either one suffices.

Theorem (Completeness)

If $P_1, \ldots, P_n \models Q$, then Q is provable from the assumptions P_1, \ldots, P_n . Proof: more complicated, see H&R 1.4.4.

Sequents

We have been representing proofs with assumptions like so:

Another notation is **sequent-style** or Fitch-style:

 $P_1, P_2, \ldots, P_n \vdash O$

The assumptions are usually collectively referred to using Γ:

Γ *⊢ Q*

This style is fiddlier on paper, but easier to prove meta-theoretic properties for, and easier to represent on a computer.

Natural Deduction Sequents

$$
\frac{\Gamma \vdash P \qquad \Gamma \vdash Q}{\Gamma \vdash P \land Q} \text{ (conjI)} \qquad \frac{\Gamma \vdash P \land Q}{\Gamma \vdash P} \text{ (conjunct1)} \qquad \frac{\Gamma \vdash P \land Q}{\Gamma \vdash Q} \text{ (conjunct2)}
$$
\n
$$
\frac{\Gamma \vdash P}{\Gamma \vdash P \lor Q} \text{ (disjI1)} \qquad \frac{\Gamma \vdash Q}{\Gamma \vdash P \lor Q} \text{ (disjI2)} \qquad \frac{\Gamma \vdash P \lor Q \qquad \Gamma, P \vdash R \qquad \Gamma, Q \vdash R}{\Gamma \vdash R} \text{ (disjE)}
$$
\n
$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \text{ (impI)} \qquad \frac{\Gamma \vdash A \rightarrow B \qquad \Gamma \vdash A}{\Gamma \vdash B} \text{ (mp)}
$$
\nNo introduction rule for \perp \n
$$
\frac{\Gamma \vdash \perp}{\Gamma \vdash P} \text{ (FalseE)}
$$
\n
$$
\frac{\Gamma \vdash \perp}{\Gamma \vdash \neg P} \text{ (notE)} \qquad \frac{\Gamma \vdash \neg P \qquad \Gamma \vdash P}{\Gamma \vdash \perp} \text{ (notE)} \qquad \frac{\Gamma \vdash \neg P \lor P}{\Gamma \vdash \neg P \lor P} \text{ (excluded_middle)}
$$

Natural Deduction in Isabelle/HOL

By default, Isabelle represents the sequent $P_1, P_2, \ldots, P_n \vdash Q$ with the following notation:

$$
P_1 \Longrightarrow (P_2 \Longrightarrow \ldots \Longrightarrow (P_n \Longrightarrow Q) \ldots)
$$

which is also written as: $\llbracket P_1; P_2; \ldots; P_n \rrbracket \Longrightarrow Q$

Note: To switch on the second (bracketed) notation for sequents in Isabelle, select: Plugins \rightarrow Plugin Options in the Isabelle menu bar. Then select Isabelle \rightarrow General and enter *brackets* in the Print Mode box.

The symbol \Longrightarrow is *meta-implication*.

Meta-implication is used to represent the relationship between premises and conclusions of rules.

$$
\begin{array}{ll}\n[P] \quad \vdots \\
\frac{Q}{P \to Q} \quad \text{is written as} \quad (?P \Longrightarrow ?Q) \Longrightarrow (?P \to ?Q)\n\end{array}
$$

Natural Deduction Rules in Isabelle

p ∨

A selection of natural deduction rules in Isabelle notation:

$$
\frac{P}{P \land Q} \text{ (conj)} \qquad \qquad [\![?P; ?Q] \implies ?P \land ?Q
$$
\n
$$
\frac{P \land Q}{P} \text{ (conjunct1)} \qquad \qquad ?P \land ?Q \implies ?P
$$
\n
$$
\frac{P}{P \lor Q} \text{ (disj11)} \qquad \qquad ?P \implies ?P \lor ?Q
$$
\n
$$
[P] \qquad [Q]
$$
\n
$$
\vdots \qquad \vdots
$$
\n
$$
\frac{P}{P} \qquad [Q]
$$
\n
$$
\vdots \qquad \vdots
$$
\n
$$
\frac{P}{P} \qquad [Q]
$$
\n
$$
\vdots \qquad \vdots
$$
\n
$$
\frac{P}{P} \qquad [Q]
$$
\n
$$
\frac{P}{P} \qquad [Q]
$$
\n
$$
\frac{P}{P} \qquad [Q]
$$
\n
$$
\frac{P}{P} \qquad [Q] \qquad \qquad \frac{P}{P} \qquad [P \lor ?Q; ?P \implies ?R; ?Q \implies ?R]
$$
\n
$$
\implies ?R
$$

Doing Proofs in Isabelle: Theory Set-up

Syntax: theory *MyTheory* imports $T_1 ... T_n$ begin (definitions, theorems, proofs, …)*∗* end

*MyTheory***:** name of theory. Must live in file *MyTheory*.thy *Ti* **:** names of *imported* theories. Import is transitive.

Often: imports Main

Doing Proofs in Isabelle

A declaration like so enters proof mode:

theorem K: " $A \rightarrow B \rightarrow A$ "

Isabelle responds:

```
proof (prove)
```

```
goal (1 subgoal):
    1 \quad A \rightarrow B \rightarrow A
```
We now apply proof methods (tactics) that affect the subgoals. Either:

- \blacktriangleright generate new subgoal(s), breaking the problem down; or
- \triangleright solve the subgoal

When there are no more subgoals, then the proof is complete.

The assumption Method

Given a subgoal of the form:

 $\llbracket A; B \rrbracket \Longrightarrow A$

This subgoal is solvable because we want to prove *A* under the assumption that *A* is true.

We can solve this subgoal using the assumption method:

apply assumption

The rule Method

To apply an inference rule backward, we use the method/tactic called rule.

Consider one of the elimination rules for \vee , disjI1

$$
?P \Longrightarrow ?P \vee ?Q
$$

Using the Isabelle command

apply (rule disjI1)

on the goal

$$
[\![A;B;C]\!] \Longrightarrow (A \wedge B) \vee D
$$

yields the subgoal

$$
[\![A;B;C]\!] \Longrightarrow A \wedge B
$$

Applying the command rule can be viewed as a way of breaking down the problem into subproblems.

Matching and Unification

In applying rule

$$
?P \Longrightarrow ?P \lor ?Q
$$

to goal

$$
[\![A;B;C]\!] \Longrightarrow (A \wedge B) \vee D
$$

The pattern ?*P* \vee ?*O* is **matched** with the target $(A \wedge B) \vee D$ to yield the instantiations $?P \mapsto A \wedge B$, $?O \mapsto D$ which make the pattern and target the same. The following goal results

$$
[\![A;B;C]\!] \Longrightarrow A \wedge B
$$

In general, if the goal conclusion contains schematic variables, the rule and goal conclusions are **unified** i.e. both are instantiated so as to make them the same.

Summary

▶ More natural deduction (H&R 1.2, 1.4)

- \triangleright The rules for \rightarrow , \leftrightarrow and \neg
- ▶ Rules for classical reasoning
- ▶ Soundness and completeness properties
- ▶ Sequent-style presentation
- ▶ Starting with proofs in Isabelle
- ▶ Next time:
	- ▶ More on using Isabelle to do proofs
	- ▶ N-style vs. L-style proof systems