
A Verified Neurosymbolic Pipeline 
for Learning Linear Temporal 
Behaviour

Mark Chevallier, Jacques Fleuriot



Lecture Structure

1. Introduction to the problem
2. LTL
3. Isabelle formalisation of LTL
4. Implementation and Experiments

Our work on an end-to-end pipeline to inject LTL rules into NN learning
• Train NNs to satisfy temporal constraints
• Improved guarantees of faithfulness to specification
• Experiments show interesting interactions with the domain



A Problem

Rules based movement in time

Guaranteed fidelity to rules



Problem: Linear Temporal Logic (LTL)

Eventually

Eventually

Always



Problem: Integrating LTL into neural 
networks

Training 
Data

Output

True 
Values

Loss

Insert extra loss here - 
violation of LTL

Need differentiable loss function
Complicated! Prone to errors



Problem: What does our pipeline offer?

Time based property checking

Faithfulness to specification

Code generation Code used in

Specification
Proof of properties

Calculation Learning

Easily adopted for different tasks



Lecture Structure

1. Introduction to the problem
2. LTL
3. Isabelle formalisation of LTL
4. Implementation and Experiments



LTL: Traces

Trace

● Time ● p1 ● p2 ● p3
● -3 ● 0 ● -8 ● -30

● -2 ● -1 ● -4 ● -8

● -1 ● -1 ● 4 ● -1

● 0 ● 0 ● 8 ● 0

● 1 ● 1 ● 12 ● 1

● 2 ● 1 ● 16 ● 8Discrete time!



LTL: Operators

0 5

Next, Release

And, Or

Always
Eventually
Until



LTL: Not having "Not"

Not is usually primitive

But causes issues with soundness

We can use Not as a function instead

Constraint A Not Constraint B

Constraint B is equivalent to !(Constraint A)



LTL in Finite Time

LTL is over infinite time...

LTLf is over finite time

So what happens here?

Need to decide if Until/Release/Next are Strong/Weak



Lecture Structure

1. Introduction to the problem
2. LTL
3. Isabelle formalisation of LTL
4. Implementation and Experiments



Isabelle: Formalisation

LTL

L function

dL function

Prove properties

Generate code



Isabelle: Deep embedding of LTL

LTL constraint

trace evaluation

Traces and states

Operators



Isabelle: Smooth functions

Max functions needed for smooth loss function

But not differentiable everywhere!

Smooth version of max

0.1*log(exp(x/0.1)+exp(y/
0.1))0.1 = smoothing factor gamma



Isabelle: L function

0 +
loss

FALSE

TR
U

E

evaluation

Derivative of L (dL) also

softening factor
trace

LTL constraint

loss

loss is sound wrt 
LTL semantics

L c p g = 0 iff eval c p g (as g tends to 0)



Isabelle: Structure of L

Extra parameter gamma 
for smoothing

Or becomes Min

And becomes Max

Comparisons come first!

Rest of function translated simply



Isabelle: Proofs

What can we prove?

LTL semantics match expectationsSoundness of loss function

Derivative function is correct



Isabelle: How do we prove against L?

INDUCTION!
...along two objects

Size of the path (base case empty path)

Along constraint (each operator)



Isabelle: Code Generation

Isabelle specification

OCaml code

thin translation layer, no manual intervention



Lecture Structure

1. Introduction to the problem
2. LTL
3. Isabelle formalisation of LTL
4. Implementation and Experiments



Experiments: Using OCaml with Python

Python library by Laurent Mazare

Restricted subset of OCaml



Experiments: DMP neural network

DMPs use differential equations to describe a path

NNs learn to imitate paths of motion using DMPs

ADVANTAGES

Can we use LTL to learn?

DISADVANTAGES

Smooth paths
Trajectory structure "built in"

Indirect



Experiments: How NN Learns from 
Constraints

Training 
Data

Output True Values

Constraint

Lc

Li

Li+Lc = Total loss

Possible to weight Lc

L function used here

Backpropagation

dL function used here



Experiments: Results



Experiments: More complicated paths

Eventually (reach pt 1 AND Eventually (reach pt 2))

Nested temporal constraints costly – O(tn)

Fully nested constraint very very costly and slow

DMP allows CONJOINED constraint instead

MUCH faster! O(t2+ t2)

Does not work on more direct path prediction methods



Further developments

More experiments

Tensor implementation
Much faster execution
More practical implementation

Planning schedules
Robotic movement

More complicated logics...



Conclusion

End-to-end pipeline to inject LTL rules into NN learning
• Train NNs to satisfy temporal constraints
• Guarantee faithfulness to specification
• Domain can impact results

Chevallier, M., Whyte, M., & Fleuriot, J. D. (2022). Constrained training of neural networks via theorem proving. In Short 
Paper Proceedings of the 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and 
Synthesis, Vol. 3311. CEUR-WS.org.


	Slide1
	Slide2
	Slide35
	Slide3
	Slide26
	Slide4
	Slide36
	Slide5
	Slide19
	Slide28
	Slide24
	Slide37
	Slide8
	Slide9
	Slide23
	Slide27
	Slide29
	Slide12
	Slide30
	Slide13
	Slide38
	Slide14
	Slide31
	Slide32
	Slide33
	Slide34
	Slide17
	Slide18

