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Lecture Structure

1. Introduction to the problem
2. LTL
3. Isabelle formalisation of LTL
4. Implementation and Experiments

Our work on an end-to-end pipeline to inject LTL rules into NN learning
• Train NNs to satisfy temporal constraints
• Improved guarantees of faithfulness to specification
• Experiments show interesting interactions with the domain



A Problem

Rules based movement in time

Guaranteed fidelity to rules



Problem: Linear Temporal Logic (LTL)

Eventually

Eventually

Always



Problem: Integrating LTL into neural 
networks

Training 
Data

Output

True 
Values

Loss

Insert extra loss here - 
violation of LTL

Need differentiable loss function
Complicated! Prone to errors



Problem: What does our pipeline offer?

Time based property checking

Faithfulness to specification

Code generation Code used in

Specification
Proof of properties

Calculation Learning

Easily adopted for different tasks
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LTL: Traces

Trace

● Time ● p1 ● p2 ● p3
● -3 ● 0 ● -8 ● -30

● -2 ● -1 ● -4 ● -8

● -1 ● -1 ● 4 ● -1

● 0 ● 0 ● 8 ● 0

● 1 ● 1 ● 12 ● 1

● 2 ● 1 ● 16 ● 8Discrete time!



LTL: Operators

0 5

Next, Release

And, Or

Always
Eventually
Until



LTL: Not having "Not"

Not is usually primitive

But causes issues with soundness

We can use Not as a function instead

Constraint A Not Constraint B

Constraint B is equivalent to !(Constraint A)



LTL in Finite Time

LTL is over infinite time...

LTLf is over finite time

So what happens here?

Need to decide if Until/Release/Next are Strong/Weak
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Isabelle: Formalisation

LTL

L function

dL function

Prove properties

Generate code



Isabelle: Deep embedding of LTL

LTL constraint

trace evaluation

Traces and states

Operators



Isabelle: Smooth functions

Max functions needed for smooth loss function

But not differentiable everywhere!

Smooth version of max

0.1*log(exp(x/0.1)+exp(y/
0.1))0.1 = smoothing factor gamma



Isabelle: L function

0 +
loss

FALSE

TR
U

E

evaluation

Derivative of L (dL) also

softening factor
trace

LTL constraint

loss

loss is sound wrt 
LTL semantics

L c p g = 0 iff eval c p g (as g tends to 0)



Isabelle: Structure of L

Extra parameter gamma 
for smoothing

Or becomes Min

And becomes Max

Comparisons come first!

Rest of function translated simply



Isabelle: Proofs

What can we prove?

LTL semantics match expectationsSoundness of loss function

Derivative function is correct



Isabelle: How do we prove against L?

INDUCTION!
...along two objects

Size of the path (base case empty path)

Along constraint (each operator)



Isabelle: Code Generation

Isabelle specification

OCaml code

thin translation layer, no manual intervention
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Experiments: Using OCaml with Python

Python library by Laurent Mazare

Restricted subset of OCaml



Experiments: DMP neural network

DMPs use differential equations to describe a path

NNs learn to imitate paths of motion using DMPs

ADVANTAGES

Can we use LTL to learn?

DISADVANTAGES

Smooth paths
Trajectory structure "built in"

Indirect



Experiments: How NN Learns from 
Constraints

Training 
Data

Output True Values

Constraint

Lc

Li

Li+Lc = Total loss

Possible to weight Lc

L function used here

Backpropagation

dL function used here



Experiments: Results



Experiments: More complicated paths

Eventually (reach pt 1 AND Eventually (reach pt 2))

Nested temporal constraints costly – O(tn)

Fully nested constraint very very costly and slow

DMP allows CONJOINED constraint instead

MUCH faster! O(t2+ t2)

Does not work on more direct path prediction methods



Further developments

More experiments

Tensor implementation
Much faster execution
More practical implementation

Planning schedules
Robotic movement

More complicated logics...



Conclusion

End-to-end pipeline to inject LTL rules into NN learning
• Train NNs to satisfy temporal constraints
• Guarantee faithfulness to specification
• Domain can impact results

Chevallier, M., Whyte, M., & Fleuriot, J. D. (2022). Constrained training of neural networks via theorem proving. In Short 
Paper Proceedings of the 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and 
Synthesis, Vol. 3311. CEUR-WS.org.


	Slide1
	Slide2
	Slide35
	Slide3
	Slide26
	Slide4
	Slide36
	Slide5
	Slide19
	Slide28
	Slide24
	Slide37
	Slide8
	Slide9
	Slide23
	Slide27
	Slide29
	Slide12
	Slide30
	Slide13
	Slide38
	Slide14
	Slide31
	Slide32
	Slide33
	Slide34
	Slide17
	Slide18

