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Our work on an end-to-end pipeline to inject LTL rules into NN learning

* Train NNs to satisfy temporal constraints
* Improved guarantees of faithfulness to specification
* Experiments show interesting interactions with the domain

Introduction to the problem
LTL

Isabelle formalisation of LTL
Implementation and Experiments

~W NP



A Problem

Rules based movement in time

Guaranteed fidelity to rules




Problem: Linear Temporal Logic (LTL)

Eventually

Eventually




Problem: Integrating LTL into neural
networks

Training

Data

Insert extra loss here -
violation of LTL

Need differentiable loss function
Complicated! Prone to errors



Problem: what does our pipeline offer?

A Time based property checking

Faithfulness to specification ~_ggi¥®

Easily adopted for different tasks

Specification - Calculation Learning
Proof of properties
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LTL: Traces

Discrete time!




LTL: Operators

And, Or

| —

Until
Next, Release

— - : ——— : T Ee Llmeerme



LTL: Not having "Not"

S A———

~ Notis usually primitive
But causes issues with soundness

We can use Not as a function instead

Constraint A » Constraint B

Constraint B is equivalent to !(Constraint A)



LTL in Finite Time

LTL is over infinite time...

Y

LTLfis over finite time

So what happens here?

Need to decide if Until/Release/Next are Strong/Weak
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Isabelle: Formalisation

L function

\

deanﬂon



Isabelle: Deep embedding of LTL

datatype comp = Less int int | Lequal int int | Equal int int
| Nequal int int

v

datatype constraint = Comp comp | And constraint constraint
| Or constraint constraint | Next constraint | Always constraint
| Eventually constraint | Until constraint constraint
Release constraint constraint

Operators

type_synonym state = "int = real”

type_synonym path = "state list" function eval :: "constraint = path = bool"

Traces and states

LTL constraint

trace evaluation



Isabelle: Smooth functions

Max functions needed for smooth loss function

But not differentiable everywhere!

Sm;)oth version of max
0.1*log(exp(x/0.1)+exp(y/
0.1 = smoothing factor gagifma




Isabelle: L fUnctiQn’

evaluation

FALSE

Lc pg=0iff eval’c-p g (as g tends to 0)
- Derivative of L (dL) also

———————————- +
loss

loss is sound wrt
LTL semantics

softenihg factor

trace loss
LTL constraint \ l

. /-

:: "constraint = path = real = real”




Isabelle:'Structure of L

CompariSOnS COmeﬁrSt! "Lequal_gamma v a b = Max_gamma ~ (a-b) @'

"L (Comp (Equal vl v2)) (s # ss) 7 =

Max_gamma_comp ~ (L (Comp (Lequal vl v2)) (s # ss) 7)
(L (Comp (Lequal v2 vl1)) (s # ss) ~)"

‘Rest of function translated simply

"eval (Until cl c2) (s # ss) = ((((eval cl (s # ss))
A (1f ss = [] then True else (eval (Until cl c2) ss))))
v eval c2 (s # ss))”

Or becomes Min

“L (Until cl c2) (s # ss) v = Min_gamma ~ (L c2 (s # ss) 7) 4///’/////////

(Max gamma ~ (L cl (s # ss) ~) (1f ss = [] then ©
else (L (Until cl c2) ss ~)))"

And becomes Max | Extra parameter gamma
for smoothing




Isabelle: Prbofs

lemma Eventually works:

lemma L _eval sound:
fixes ss :: path and c¢ :: constraint

fixes ¢ :: constraint and ss :: path

shows "((MA. L ¢ ss ~) —0— 0) = (eval c ss)" shows "(3dn < length ss. eval ¢ (drop n ss)) = eval (Eventually c) ss"

& idness of IbE-fmetion LTL semantics match expectations

What can we prove?

theorem L _has derivative:
fixes x ~ :: real and pth :: path
assumes gamma gt zero: "4 > 0"

shows “"Ac 1 j. ((Ay. L c (update path pth i j y) ~)
has field derivative (dL c (update path pth 1 j x) v 1 j)) (at x})"

Derivative function is correct



Tsabelle: How do we prove against L?

INDUCTION!

...along two objects
Size of the path (base case empty path)

Along constraint (each operator)



Isabelle: Code Generation

fun Bell gamma :: "real = real = real"” where

"Bell_gamma 7 X = Isabelle specification

(1f ~<(0::real) then (Nzero x) else (l::real)/exp((x*x)/(~+~)))"

thin translation layer, no manual intervention

let rec bell gamma

‘ gamma X =
' (1f Pervasives.(<=) gamma 0.0 then nzero x
OCaml COde else Pervasives.( /. ) 1.0

(Pervasives.exp
(Pervasives.( /. ) (Pervasives.( *. ) X x)
(Pervasives.( +. ) gamma gamma))));;
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Experiments:-Using OCaml with Python

Using Python and OCaml in the same Jupyter

notebook
DEC 16, 2019 | 11 MIN READ

- Restricted subset of OCaml 6

Python library by Laurent Mazare



Experiments:-DMP neural network

DMPs use differential equétions to describe a path
- NNs learn to imitate paths of motion using DMPs

| Can we use LTL to learn?

ADVANTAGES DISADVANTAGES

Smooth paths . Indirect
Trajectory structure "built in"



Experiments: How NN Learns from
Constraints

E fun'ctif used here

True Values
Training

Data

Backpropagation L.+L_ =Total loss

/ Possible to weight L_

dL function used here



~ Experiments: Results | =

ompound, n=4

Unconstrained A Unconstrained Unconstrained

Constrainegd Constrained Constraineg Unconstrained
ned




Experiments: More complicated paths

Eventually (reach pt 1 AND Eventually (reach pt 2))

Nested temporal constraints costly — O(t")

Fully nested constraint very very costly and slow
DMP allows CONJOINED constraint instead

MUCH faster! O(t2+ t2?)

Does not work on more direct path prediction methods




Further developments

More experiments
Planning schedules
Robotic movement

Tensor implementation

Much faster execution
:More practical implementation

More complicated logics...



Conclusion

End-to-end pipeline toinject LTL rules into NN learning

* Train NNs to satisfy temporal constraints
* Guarantee faithfulness to specification
* Domain can impact results

Chevallier, M., Whyte, M., & Fleuriot, J. D. (2022). Constrained training of neural networks via theorem proving. In Short

Paper Proceedings of the 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and
Synthesis, Vol. 3311. CEUR-WS.org.
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