A Verified Neurosymbolic Pipeline for Learning Linear Temporal Behaviour

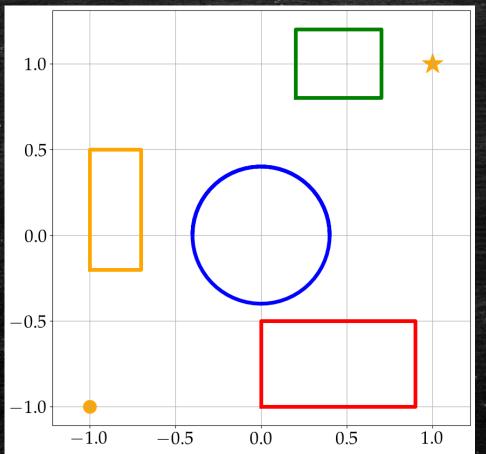
Mark Chevallier, Jacques Fleuriot

Lecture Structure

Our work on an end-to-end pipeline to inject LTL rules into NN learning

- Train NNs to satisfy temporal constraints
- Improved guarantees of faithfulness to specification
- Experiments show interesting interactions with the domain
- 1. Introduction to the problem
- 2. LTL
- 3. Isabelle formalisation of LTL
- 4. Implementation and Experiments

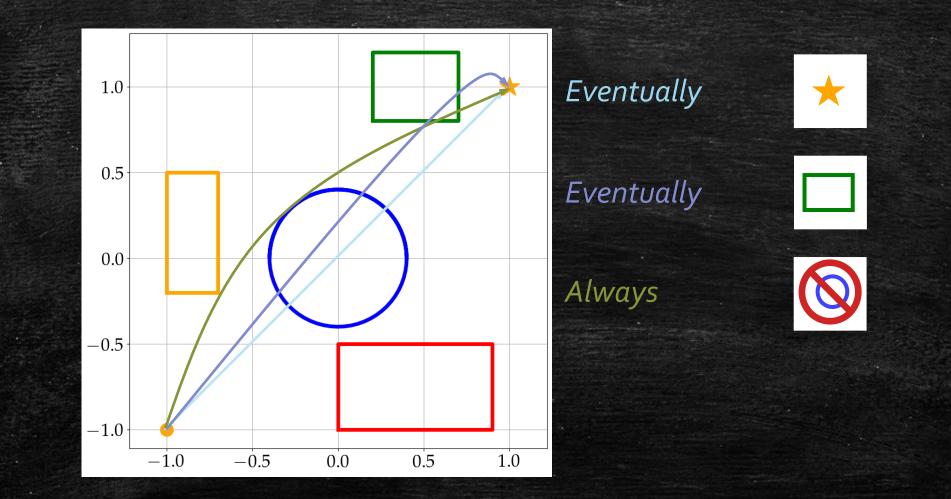
A Problem



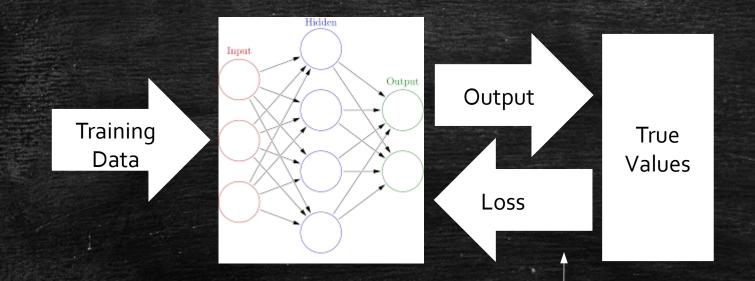
Rules based movement in time

Guaranteed fidelity to rules

Problem: Linear Temporal Logic (LTL)



Problem: Integrating LTL into neural networks



Insert extra loss here - violation of LTL

Need *differentiable* loss function Complicated! Prone to errors

Problem: What does our pipeline offer?

Time based property checking

Faithfulness to specification

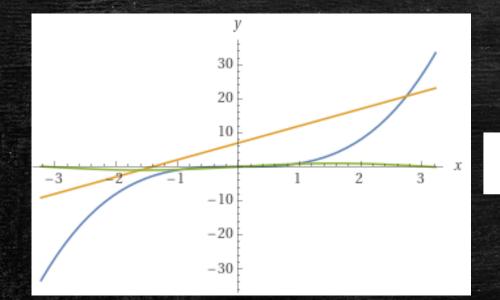
Easily adopted for different tasks

Specification Proof of properties

Lecture Structure

- 1. Introduction to the problem
- 2. LTL
- 3. Isabelle formalisation of LTL
- 4. Implementation and Experiments

LTL: Traces

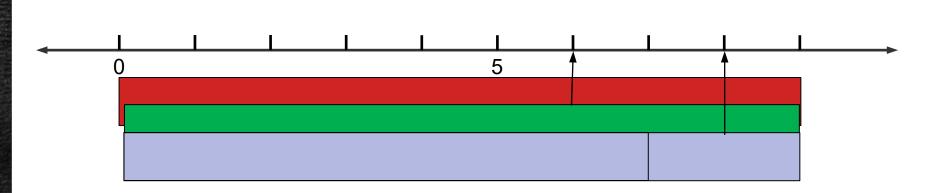


	 Time 	• p1	• p ₂	• p ₃
	• -3	• 0	• -8	• -30
	• -2	• -1	• -4	• -8
Trace	• -1	• -1	• 4	• -1
	• 0	• 0	• 8	• 0
	• 1	• 1	• 12	• 1
	• 2	• 1	• 16	• 8

Discrete time!

LTL: Operators

And, Or



Always Eventually Until Next, Release

LTL: Not having "Not"

Not is usually primitive But causes issues with soundness We can use Not as a function instead

Constraint A

Not

Constraint B

Constraint B is equivalent to !(Constraint A)

LTL in Finite Time

LTL is over infinite time...

LTLf is over finite time

So what happens here?

Need to decide if Until/Release/Next are Strong/Weak

Lecture Structure

- 1. Introduction to the problem
- 2. LTL
- 3. Isabelle formalisation of LTL
- 4. Implementation and Experiments

Isabelle: Formalisation

Isabelle: Deep embedding of LTL

Operators -

datatype constraint = Comp comp | And constraint constraint
 | Or constraint constraint | Next constraint | Always constraint
 | Eventually constraint | Until constraint constraint
 | Release constraint constraint

type_synonym state = "int ⇒ real"
type_synonym path = "state list"

Traces and states

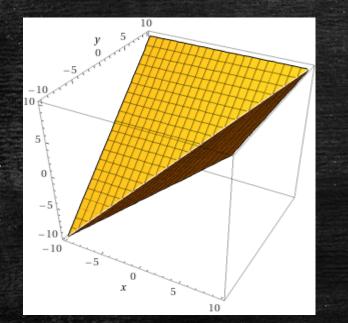
function eval :: "constraint ⇒ path ⇒ bool"

LTL constraint

trace

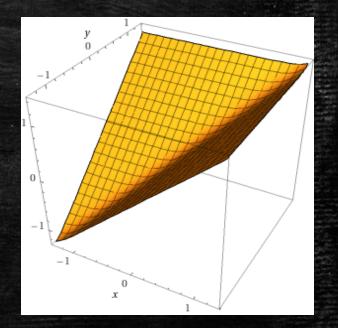
evaluation

Isabelle: Smooth functions



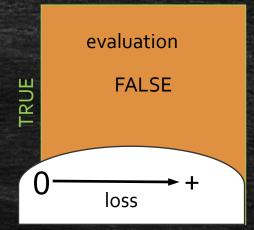
Max functions needed for smooth loss function But not differentiable everywhere!

> Smooth version of max $0.1*\log(\exp(x/0.1)+\exp(y/0.1))$ 0.1 = smoothing factor gamma

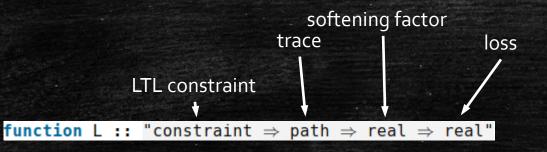


Isabelle: L function

L c p g = 0 iff eval c p g (as g tends to 0) Derivative of L (dL) also



loss is sound wrt LTL semantics



Isabelle: Structure of L

Comparisons come first!

"Lequal_gamma γ a b = Max_gamma γ (a-b) 0" "L (Comp (Equal v1 v2)) (s # ss) γ = Max_gamma_comp γ (L (Comp (Lequal v1 v2)) (s # ss) γ) (L (Comp (Lequal v2 v1)) (s # ss) γ)"

Rest of function translated simply

Or becomes Min

"L (Until c1 c2) (s # ss) γ = Min_gamma γ (L c2 (s # ss) γ) (Max_gamma γ (L c1 (s # ss) γ) (if ss = [] then 0 else (L (Until c1 c2) ss γ)))"

And becomes Max

Extra parameter gamma for smoothing

Isabelle: Proofs

lemma L	_eval_	soun	d:						
fixes	с ::	cons	traim	nt <mark>a</mark>	nd s	s ::	path		
shows	" (($\lambda\gamma$	γ. L (c ss	γ)	$-0 \rightarrow$	0) :	= (eval	l c	ss)'

Soundness of loss function

lemma Eventually_works:
 fixes ss :: path and c :: constraint
 shows "(∃n < length ss. eval c (drop n ss)) = eval (Eventually c) ss"</pre>

LTL semantics match expectations

What can we prove?

<pre>theorem L_has_derivative:</pre>		
fixes x γ :: real and pth :: path		
assumes gamma_gt_zero: " γ > 0"		
shows " \land c i j. ((λ y. L c (update_path pth i j y) γ)		
<code>has_field_derivative (dL c (update_path pth i j x) γ</code>	i j))	(at x)"

Derivative function is correct

Isabelle: How do we prove against L?

INDUCTION!

...along two objects Size of the path (base case empty path) Along constraint (each operator)

Isabelle: Code Generation

fun Bell_gamma :: "real \Rightarrow real \Rightarrow real" where "Bell_gamma $\gamma \times =$ (if $\gamma \leq (0::real)$ then (Nzero χ) else (1::real)/exp(($\chi * \chi$)/($\gamma + \gamma$)))"

thin translation layer, no manual intervention

let rec bell gamma gamma x = (if Pervasives.(<=) gamma 0.0 then nzero x OCaml code else Pervasives.(/.) 1.0 (Pervasives.exp (Pervasives.(/.) (Pervasives.(*.) x x) (Pervasives.(+.) gamma gamma))));;

Isabelle specification

Lecture Structure

- 1. Introduction to the problem
- 2. LTL
- 3. Isabelle formalisation of LTL
- 4. Implementation and Experiments

Experiments: Using OCaml with Python

Python library by Laurent Mazare Restricted subset of OCaml

Using Python and OCaml in the same Jupyter notebook

DEC 16, 2019 | 11 MIN READ

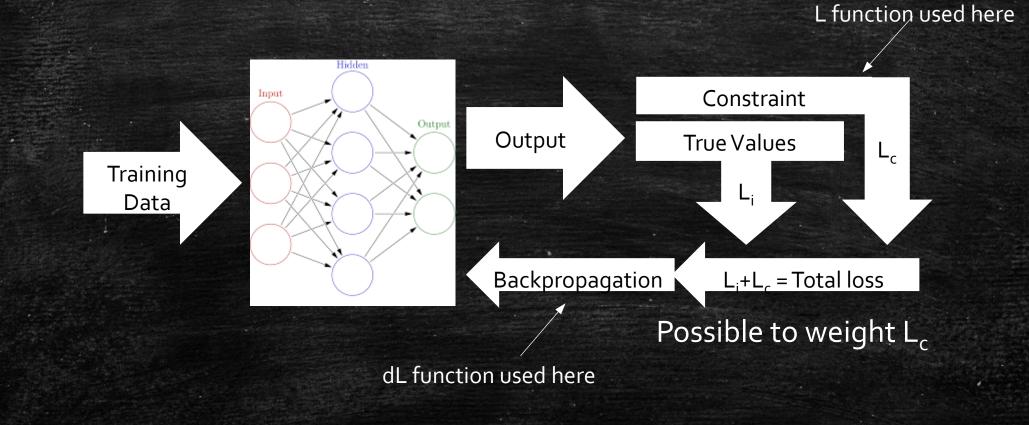
Experiments: DMP neural network

DMPs use differential equations to describe a path NNs learn to imitate paths of motion using DMPs Can we use LTL to learn?

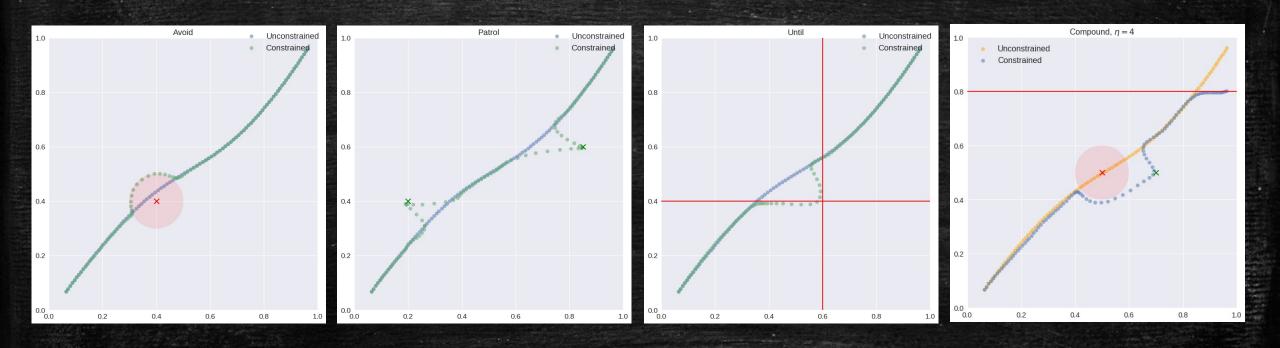
ADVANTAGES Smooth paths Trajectory structure "built in"

DISADVANTAGES Indirect

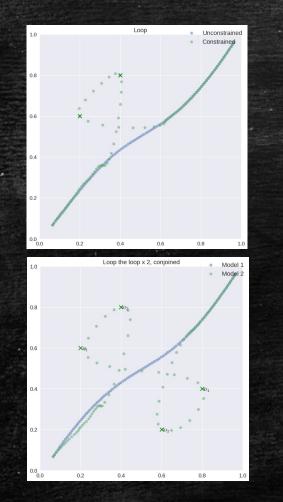
Experiments: How NN Learns from Constraints



Experiments: Results



Experiments: More complicated paths



Eventually (reach pt 1 AND Eventually (reach pt 2)) Nested temporal constraints costly – $O(t^n)$

Fully nested constraint very very costly and slow DMP allows CONJOINED constraint instead MUCH faster! *O*(t²+ t²) Does not work on more direct path prediction methods

Further developments

More experiments Planning schedules Robotic movement

Tensor implementation Much faster execution More practical implementation

More complicated logics...

Conclusion

End-to-end pipeline to inject LTL rules into NN learning

- Train NNs to satisfy temporal constraints
- Guarantee faithfulness to specification
- Domain can impact results

Chevallier, M., Whyte, M., & Fleuriot, J. D. (2022). *Constrained training of neural networks via theorem proving*. In Short Paper Proceedings of the 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis, Vol. 3311. CEUR-WS.org.