
Advanced Robotics

Steve Tonneau

School of Informatics

University of Edinburgh

Revision Lecture

Exam: MAYBE NOT UP TO DATE!

❏ Please check website for the latest info: https://exams.is.ed.ac.uk/

https://exams.is.ed.ac.uk/

Exam Topics

1. Coordinate Transformations

2. Forward and Inverse Geometry

3. Dynamics

4. Digital System and Digital Controllers (PID)

5. Path & Motion Planning I, II

6. Optimisation

7. Tutorials

8. Software Lab

9. Hardware Labs

10. No reinforcement learning

Homogeneous Transformation Matrix trick

❏ => annoying to write (especially when composing)

❏ This operation can be written in matrix form:

❏ With

Special groups for rotations

An element of the group…. Can be represented as …

Rotation matrix

quaternion

A velocity ?

rotation

displacement translation rotation

A spatial

velocity ?

Homogeneous

matrix

Kinematic StructuresKinematic chain and map

Generally, frames placed as follows to

simplify the variable transformations

Black placements are constant

Red placement are functions of q

6

Point of interest often

not on effector frame origin

Forward / inverse kinematics

❏ Forward kinematics consists, given configuration and velocity in configuration

space, in computing the velocity of a rigid body in the cartesian space:

❏ Inverse kinematics consists, given a desired velocity in the cartesian space

(and the current configuration), in computing a velocity in the configuration

space result in a velocity as close as possible to :

7

Solution to the unconstrained IK problem:

With Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits,

velocity limits, etc:

IK with constraints: quadratic programming

❏ Velocity bounds

(element-wise) s.t.

❏ Joint bounds

(using euler integration over a time step)

❏ Can also add other cost functions…

❏ no longer optimal solution

However, easy to solve using a Quadratic Program solver (e.g. quadprog)

Generalising the notion of task

❏ Not all tasks are just a matter of tracking end-effector trajectories

❏ Task = a control objective (as in examples at the start of the control lecture)

❏ A task can be described as a function e to minimise error (as in optimal control)

❏ Denote e as measuring the error between the real and reference outputs

❏ A large variety of such tasks can then fit into ID control. Relevant ones for your

labs are postural tasks (tracking a reference configuration) and force control

tasks, e.g. for contact interactions. 10

error measure reference

IK vs IG

❏ Inverse kinematics (also called differential IK) is a linear, convex problem, very

easy to solve

❏ Inverse geometry (also called IK) is a non-linear problem, very hard to solve

❏ When trying to solve IG iteratively, we can use the pseudo-inverse of the

jacobian to locally update a configuration towards one that is closer to the goal.

This is similar to performing one step of gradient descent (See example after)

The configuration space (Lozano-Peréz 83)

❏ Robot posture is a point q in the configuration space C, of dimension n, or n+6 if

root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)

❏ Each internal dof represented by a joint parameter, subset of q

❏ If using quaternions to represent free-flyer rotation, q is represented with n+7 != n+6 variables

12Configuration space 𝐶3D environment 𝑊

q is used to

describe both a

quaternion and a

configuration in the

littérature …

2 manifolds (subsets) for C

❏ Given a point q in C, using Forward Geometry we can determine whether:

❏ q is in collision (in Cfree) => p(q) = true

❏ q is not in collision (in Cobs) => p(q) = false

❏ Given:

❏ a current configuration qc

❏ a goal configuration qg

❏ Design an algorithm to compute a collision free path from qc to qg

13

Sampling based motion planning summary

❏ We have (hopefully) come up with the principles for a global planning algorithm

❏ A sampling based motion planning algorithm generates a graph were:

❏ Nodes are points in the feasible space (in our case Cfree)

❏ Edges are feasible paths between Nodes computing with a local steering method:

❏ In geometric case, often obtained by interpolation

❏ Can be as complex as required by the considered problem

❏ The formulation is very generic and can be used to represent any robotics

planning problem (RRTs were developed for vehicle control, ie differential

constraints) 14

Basic RRT algorithm – single query variant

Pseudo code

15

qinitial

qgoal

qnear

Rigid body dynamics equations

16

C is a vector with Coriolis plus centrifugal terms

C is a matrix with Coriolis plus centrifugal terms

17

This is a standard and convenient way of tracking a

reference trajectory when the robot dynamics are

known: all the joints will behave exactly like a 1D point

mass around the reference trajectory!

Joint Space Method

Inverse dynamics control in a nutshell

❏ Given q, and , compute torque commands that achieve desired

acceleration .

❏ Given a reference find such that resulting follows

❏ We assume we can measure q and

❏ We set , and now we must compute desired

18

Simpler control laws for manipulator

PD gravity torque

Even simpler is PID control:

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID

19

Inverse Dynamics control as optimisation problem

❏ As for inverse kinematics, we can write a least square problem:

❏ The optimal solution to this is exactly the ID control law if we set

❏ So there may be no real advantage here, but the more general framing is

useful for more complex problems
20

argmin

Subject to

Least Square Problem (LSP) (reminder)

❏ LSP taxonomy:

❏ An L2 norm cost ||Ax - b||²

❏ Possibly linear inequality / equality constraints (Cx <= d ; D x = x)

❏ LSPs are a sub-class of convex Quadratic Problems (QPs) which have:

❏ Quadratic cost xT H x + hT x , with H >= 0

❏ Possibly linear inequality / equality constraints (Cx <= d ; D x = x)

❏ LSPs and QPs can be solved extremely fast with off-the-shelf software

=> compatible with real-time control loops (~ 1 KHz)

21

Main advantage of optimisation is constraints

❏ e.g., adding torque limits is much more straightforward:

22

argmin

Subject to

Main advantage of optimisation is constraints

❏ Assuming constant aceleration at each time step,

❏ Joint velocities constraints:

23

argmin

Subject to

Optimal control

❏ X and U are functions of t:

X: t → x(t) nx

U: t → u(t) nu

❏ The terminal time T is fixed

24

min
𝑋,𝑈

න
0

𝑇

𝑙 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑙𝑇 𝑥 𝑇

s.t. ሶ𝑥(t) = f(x(t),u(t))
Path cost

Terminal cost

Make sure you understand both TO labs

Trajectory optimisation (tutorials 6 and 7)

25

	Slide 1: Advanced Robotics
	Slide 2: Exam: MAYBE NOT UP TO DATE!
	Slide 3: Exam Topics
	Slide 4: Homogeneous Transformation Matrix trick
	Slide 5: Special groups for rotations
	Slide 6: Kinematic chain and map
	Slide 7: Forward / inverse kinematics
	Slide 8: Solution to the unconstrained IK problem:
	Slide 9: IK with constraints: quadratic programming
	Slide 10: Generalising the notion of task
	Slide 11: IK vs IG
	Slide 12: The configuration space (Lozano-Peréz 83)
	Slide 13: 2 manifolds (subsets) for C
	Slide 14: Sampling based motion planning summary
	Slide 15: Basic RRT algorithm – single query variant
	Slide 16: Rigid body dynamics equations
	Slide 17
	Slide 18: Inverse dynamics control in a nutshell
	Slide 19: Simpler control laws for manipulator
	Slide 20: Inverse Dynamics control as optimisation problem
	Slide 21: Least Square Problem (LSP) (reminder)
	Slide 22: Main advantage of optimisation is constraints
	Slide 23: Main advantage of optimisation is constraints
	Slide 24: Optimal control
	Slide 25: Trajectory optimisation (tutorials 6 and 7)

