

Advanced Robotics

Revision Lecture

Steve Tonneau School of Informatics University of Edinburgh

Exam: **MAYBE NOT UP TO DATE!**

❏ Please check website for the latest info: <https://exams.is.ed.ac.uk/>

INFR11213: Advanced Robotics (INFR11213)

Venue

McEwan Hall - Foyer Room 1 & 2 (Enter via the Pavilion)

Date: Thursday, 19th December 2024 **Time:** 2:30 p.m. to 4:30 p.m.

Exam Topics

- 1. Coordinate Transformations
- 2. Forward and Inverse Geometry
- 3. Dynamics
- 4. Digital System and Digital Controllers (PID)
- 5. Path & Motion Planning I, II
- **6. Optimisation**
- 7. Tutorials
- 8. Software Lab
- 9. Hardware Labs
- **10. No** reinforcement learning

Homogeneous Transformation Matrix trick

 $\Box^A \mathbf{p} = {}^A \mathbf{R}_B {}^B \mathbf{p} + \mathbf{t}$ => annoying to write (especially when composing)

This operation can be written in matrix form:

$$
\begin{bmatrix} {^{A}\mathbf{p}} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {^{A}\mathbf{R}_B} & t \\ \mathbf{0}_3 & 1 \end{bmatrix}}_{^{A}\mathbf{M}_B \in \mathbb{R}^{4 \times 4}} \begin{bmatrix} {^{B}\mathbf{p}} \\ 1 \end{bmatrix}
$$

❏ With

$$
{}^B\mathbf{M}_A=({}^A\mathbf{M}_B)^{-1}=\begin{bmatrix} {}^B\mathbf{R}_A & -{}^B\mathbf{R}_A t \\ \mathbf{0}_3 & 1 \end{bmatrix}
$$

Special groups for rotations

An element of the group.... Can be represented as ...

 $r \in SO(3)$

rotation

$$
\mathbf{R} \in \mathbb{R}^{3 \times 3}
$$
Rotation matrix

$$
\mathbf{q} \in \mathbb{H} \simeq \mathbb{R}^{4}, ||\mathbf{q}|| = 1
$$
 quaternion

$$
\mathbf{w} \in so(3) \simeq \mathbb{R}^{3}
$$
 A velocity?

$$
\sum_{\text{translation rotation}} \mathbb{R}^3 \times SO(3) \quad \underbrace{\sim} \quad \mathbb{R}^3 \times \mathbb{R}^{3 \times 3} \simeq \mathbb{R}^{4 \times 4} \xrightarrow{\text{homogeneous matrix}}
$$
\n
$$
\mathcal{V} \in se(3) = \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} \simeq \mathbb{R}^6 \xrightarrow{\text{A spatial velocity } 2}
$$

$$
m \in SE(3)
$$

displacement

Kinematic chain and map

Generally, frames placed as follows to simplify the variable transformations

Black placements are constant

Red placement are functions of q

 ${}^W \mathbf{M}_{eff}(\mathbf{q}) = {}^W \mathbf{M}_A {}^A \mathbf{M}_{A'}(\mathbf{q}) {}^{A'} \mathbf{M}_B {}^B \mathbf{M}_{B'}(\mathbf{q}) {}^{B'} \mathbf{M}_C {}^C \mathbf{M}_{C'}(\mathbf{q}) {}^{C'} \mathbf{M}_{eff}$

Forward / inverse kinematics

❏ Forward **kinematics** consists, given configuration and velocity in configuration space, in computing the velocity of a rigid body in the cartesian space:

$$
FK: \mathbf{q}, \mathbf{v}_q \longrightarrow \nu
$$

□ Inverse **kinematics** consists, given a desired velocity ν^* in the cartesian space (and the current configuration), in computing a velocity in the configuration space result in a velocity as close as possible to ν^* :

$$
IK:\nu^*,\mathbf{q}\longrightarrow\mathbf{v}_q
$$

Solution to the unconstrained IK problem:

$$
v_q^* = J^{\dagger} \nu^*
$$

With J^{\dagger} Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits, velocity limits, etc:

IK with constraints: quadratic programming

❏ Velocity bounds (element-wise)

$$
\min_{v_q} ||J(q)v_q - \nu^*||^2
$$

s.t.
$$
v_q^- \le v_q \le v_q^+
$$

 $\mathbf{q}^- \leq \mathbf{q} + \Delta t v_q \leq \mathbf{q}^+$ ❏ Joint bounds (using euler integration over a time step)

❏ Can also add other cost functions…

 \Box $v_a^* = J^{\dagger} \nu^*$ no longer optimal solution However, easy to solve using a Quadratic Program solver (e.g. quadprog)

Generalising the notion of task

❏ Not all tasks are just a matter of tracking end-effector trajectories

 \Box Task = a control objective (as in examples at the start of the control lecture)

❏ A task can be described as a function *e* to minimise error (as in optimal control)

❏ Denote e as measuring the **error** between the **real** and **reference** outputs

❏ A large variety of such tasks can then fit into ID control. Relevant ones for your labs are postural tasks (tracking a reference configuration) and force control tasks, e.g. for contact interactions. The set of the set o

IK vs IG

- ❏ Inverse kinematics (also called differential IK) is a linear, convex problem, very easy to solve
- ❏ Inverse geometry (also called IK) is a non-linear problem, very hard to solve
- ❏ When trying to solve IG iteratively, we can use the pseudo-inverse of the jacobian to locally update a configuration towards one that is closer to the goal. This is similar to performing one step of gradient descent (See example after)

The configuration space (Lozano-Peréz 83)

- ❏ Robot posture is a point **q** in the configuration space C, of dimension n, or n+6 if root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)
	- ❏ Each internal dof represented by a joint parameter, subset of **q**
	- ❏ If using quaternions to represent free-flyer rotation, **q** is *represented* with n+7 != n+6 variables

2 manifolds (subsets) for C

❏ Given a point q in C, using Forward Geometry we can determine whether:

 \Box q is in collision (in C_{free}) => p(q) = true

 \Box q is not in collision (in C_{obs}) => p(q) = false

❏ Given:

- \Box a current configuration q_c
- \Box a goal configuration q_{α}

 \Box Design an algorithm to compute a collision free path from q_c to q_g

Sampling based motion planning summary

❏ We have (hopefully) come up with the principles for a global planning algorithm

❏ A sampling based motion planning algorithm generates a graph were:

Nodes are points in the feasible space (in our case C_{freq})

❏ Edges are feasible paths between Nodes computing with a **local steering method**:

❏ In geometric case, often obtained by interpolation

❏ **Can be as complex as required by the considered problem**

❏ The formulation is very generic and can be used to represent any robotics planning problem (RRTs were developed for vehicle control, ie differential constraints) and the constraints of the constraints

Basic RRT algorithm – single query variant

Pseudo code

Rigid body dynamics equations

$$
\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}}+\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)+\mathbf{G}\left(\mathbf{q}\right)=\tau
$$

C is a vector with Coriolis plus centrifugal terms

$$
\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}}+\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)\dot{\mathbf{q}}+\mathbf{G}\left(\mathbf{q}\right)=\tau
$$

C is a matrix with Coriolis plus centrifugal terms

 $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{h}(\mathbf{q},\dot{\mathbf{q}}) = \tau$

Joint Space Method

Choose a desired acceleration \ddot{q}^*_t that implies a PD-like behavior around the reference trajectory!

$$
\ddot{q}_t^* = \ddot{q}_t^{\text{ref}} + K_p(q_t^{\text{ref}} - q_t) + K_d(\dot{q}_t^{\text{ref}} - \dot{q}_t)
$$

$$
M(q) \ddot{q}^* + F(q, \dot{q}) = u^*
$$

This is a standard and convenient way of tracking a reference trajectory when the **robot dynamics are known**: *all the joints will behave exactly like a 1D point mass around the reference trajectory!*

Inverse dynamics control in a nutshell

- \Box Given $\mathbf{q}, \dot{\mathbf{q}}$ and $\ddot{\mathbf{q}}$, compute torque commands τ that achieve desired acceleration $\ddot{\mathbf{q}}^d$.
- **□** Given a reference $\mathbf{q}^r(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^r(t)$

❏ We assume we can measure **q** and

□ We set $\tau = M\ddot{q}^d + h$, and now we must compute desired \ddot{q}^d

$$
\ddot{\mathbf{q}}_{\underbrace{\mathbf{p}}^{d}}^{d}=\ddot{\mathbf{q}}^{r}_{\underbrace{\mathbf{p}}^{r}}-\mathbf{K}_{p}(\mathbf{q}-\mathbf{q}^{r})-\mathbf{K}_{v}(\dot{\mathbf{q}}-\dot{\mathbf{q}}^{r}_{\underbrace{\mathbf{p}}^{r}})
$$

Simpler control laws for manipulator

$$
\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + \mathbf{g}(\mathbf{q})
$$

PD gravity torque

Even simpler is PID control:

$$
\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + \int_0^t K_i e(s) ds
$$

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID

Inverse Dynamics control as optimisation problem

❏ As for inverse kinematics, we can write a least square problem:

$$
(\tau^*,\ddot{q}^*) = \argmin_{\tau,\ddot{\mathbf{q}}} ||\ddot{\mathbf{q}} - \ddot{\mathbf{q}}^d||^2
$$

The optimal solution to this is exactly the ID control law if we set

$$
\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r - \mathbf{K}_p(\mathbf{q} - \mathbf{q}^r) - \mathbf{K}_v(\dot{\mathbf{q}} - \dot{\mathbf{q}}^r)
$$

❏ So there may be no real advantage here, but the more general framing is useful for more complex problems

Least Square Problem (LSP) (reminder)

❏ LSP taxonomy:

- \Box An L₂ norm cost $||Ax b||^2$
- Possibly linear inequality / equality constraints $(Cx \le d : D x = x)$

❏ LSPs are a sub-class of convex Quadratic Problems (QPs) which have:

- □ Quadratic cost $x^T H x + h^T x$, with $H \ge 0$
- \Box Possibly linear inequality / equality constraints (Cx \lt = d; D x = x)

❏ LSPs and QPs can be solved **extremely** fast with off-the-shelf software \Rightarrow compatible with real-time control loops (\sim 1 KHz)

Main advantage of optimisation is constraints

❏ e.g., adding torque limits is much more straightforward:

$$
(\tau^*,\ddot{q}^*)=\argmin_{\tau,\ddot{\mathbf{q}}}\,||\ddot{\mathbf{q}}-\ddot{\mathbf{q}}^d||^2
$$

Subject to $\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$ $\tau^- \leq \tau \leq \tau^+$

Main advantage of optimisation is constraints

❏ Assuming constant aceleration at each time step,

$$
\dot{\mathbf{q}}(t + \Delta t) = \dot{\mathbf{q}}(t) + \Delta t \ddot{\mathbf{q}}
$$

❏ Joint velocities constraints:

$$
(\tau^*, \ddot{q}^*) = \underset{\tau, \ddot{\mathbf{q}}}{\text{argmin}} ||\ddot{\mathbf{q}} - \ddot{\mathbf{q}}^d||^2
$$

Subject to
$$
\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}
$$

$$
\tau^- \leq \tau \leq \tau^+
$$

$$
\dot{\mathbf{q}}(t)^- \leq \dot{\mathbf{q}}(t) + \Delta t \ddot{\mathbf{q}} \leq \dot{\mathbf{q}}(t)^+
$$

Optimal control

$$
\min_{X,U} \int_0^T l(x(t),u(t))dt + l_T(x(T))
$$

s.t. $\dot{x}(t) = f(x(t),u(t))$

Terminal cost

❏ *X* and *U* are functions of t:

X: $t \in \mathbb{R} \rightarrow x(t) \in \mathbb{R}^{nx}$

U: $t \in \mathbb{R} \rightarrow u(t) \in \mathbb{R}^{nu}$

❏ The terminal time *T* is fixed

Make sure you understand both TO labs

Trajectory optimisation (tutorials 6 and 7)