> THE UNIVERSITY of EDINBURGH

- informatics

Advanced Robotics

Revision Lecture

Steve Tonneau
School of Informatics
University of Edinburgh

Exam: MAYBE NOT UP TO DATE!

1 Please check website for the latest info: https://exams.is.ed.ac.uk/

INFR11213: Advanced Robotics (INFR11213)

Venue

McEwan Hall - Foyer Room 1 & 2 (Enter via the Pavilion)

Date: Thursday, 19th December 2024
Time: 2:30 p.m. to 4:30 p.m.

https://exams.is.ed.ac.uk/

Coordinate Transformations

Forward and Inverse Geometry

Dynamics

Digital System and Digital Controllers (PID)
Path & Motion Planning I, I

Optimisation

Tutorials

Software Lab

. Hardware Labs

10. No reinforcement learning

© 0N Ok wWNRE

Homogeneous Transformation Matrix trick

N Ap = ARBBp t => annoying to write (especially when composing)

1 This operation can be written in matrix form:

“p| _ ["Re t| [Pp

1 03 1 1
AM g cR4X4
3 With
BR, —-PRt
B (A -1 A A
My = (4Mp)~ ! = [0,) }

Special groups for rotations

An element of the group.... Can be represented as ...
T E 30(3) 2 R e R3X3 Rotation matrix
rotation qe€ H ~ R4, ||q|| = 1 quaternion

W € 80(3) ~ R3 A velocity ?

m € SE(3) ~ R3xSO(3) ™ R3 x R3*3 ~ R*X4 Homogeneous

matrix

3 7
displacement translation rotation R X H ~ R
A\ 6 A spatial
V S 86(3) — lw] ~ R velocity ?

Kinematic chain and map

Generally, frames placed as follows to B,
simplify the variable transformations

joint

Black placements are constant transt. AMA(*

relative
eff.
C,Mef f offset

link WM\ A
transf.

Red placement are functions of g (

Point of interest often
not on effector frame origin

YMesr(q) = Y MA* M4 (@)Y MpPMp (q)P'Mc“Me (q)¢ Mg ¢

Forward / inverse kinematics

1 Forward kinematics consists, given configuration and velocity in configuration
space, in computing the velocity of a rigid body in the cartesian space:

FK:q,vg — v

1 Inverse kinematics consists, given a desired velocity p* in the cartesian space
(and the current configuration), in computing a velocity in the configuration
space result in a velocity as close as possible to v™*:

IK :v*,q — vy

Solution to the unconstrained IK problem:

With JT Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits,
velocity limits, etc:

IK with constraints: quadratic programming

min,, ||J(q)v, — v*||?
1 Velocity bounds vql1/(@)0g |

(element-wise) st Uy <vg < vl

3 Joint bounds a- <q+Aty, <q"
(using euler integration over a time step)

1 Can also add other cost functions...

1 v,* = J'w* no longer optimal solution
However, easy to solve using a Quadratic Program solver (e.g. quadprog)

Generalising the notion of task

1 Not all tasks are just a matter of tracking end-effector trajectories
1 Task = a control objective (as in examples at the start of the control lecture)

1 Atask can be described as a function e to minimise error (as in optimal control)

1 Denote e as measuring the error between the real and reference outputs

e(x,u,t) = y(u,t) —y*(t)
error mezYasure referYence

1 Alarge variety of such tasks can then fit into ID control. Relevant ones for your
labs are postural tasks (tracking a reference configuration) and force control
tasks, e.g. for contact interactions. 10

IK vs |G

 Inverse kinematics (also called differential IK) is a linear, convex problem, very
easy to solve

1 Inverse geometry (also called IK) is a non-linear problem, very hard to solve
1 When trying to solve IG iteratively, we can use the pseudo-inverse of the

jacobian to locally update a configuration towards one that is closer to the goal.
This is similar to performing one step of gradient descent (See example after)

The configuration space (Lozano-Peréz 83)

1 Robot posture is a point g in the configuration space C, of dimension n, or n+6 if
root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)

1 Each internal dof represented by a joint parameter, subset of g

1 If using quaternions to represent free-flyer rotation, q is represented with n+7 != n+6 variables

gis usedto
describe both a
guaternion and a
configuration in the

littérature ...
(0%
B
Y

3D environment W | Configuration space C | 12

q=|rs| R

2 manifolds (subsets) for C

1 Given a point g in C, using Forward Geometry we can determine whether:
1 g isin collision (in C;..) => p(q) = true

1 gis notin collision (in C,,¢) => p(q) = false

1 Given:

1 a current configuration g,

1 agoal configuration q

1 Design an algorithm to compute a collision free path from g, to q

13

Sampling based motion planning summary

1 We have (hopefully) come up with the principles for a global planning algorithm

1 A sampling based motion planning algorithm generates a graph were:
1 Nodes are points in the feasible space (in our case C;..)
1 Edges are feasible paths between Nodes computing with a local steering method:
1 In geometric case, often obtained by interpolation

1 Can be as complex as required by the considered problem

1 The formulation is very generic and can be used to represent any robotics
planning problem (RRTs were developed for vehicle control, ie differential
constraints) 14

Basic RRT algorithm — single query variant

Pseudo code

Algorithm 1 BUILD_RRT(q;pt)

T .init(qinat); Unear
for k=1 to K do ‘\‘/

Grand <+ RANDOM_CONFIG(); / [

dnear ~ NEAREST_NEIGHBOR(¢rund, T);

if edge_valid(grand; Gnear) then
T .add _vertex(qrand); oo
T .add_edge(qnears Grand); ‘\‘

if close_to_goal(q,qnq) then Qinitial
return SUCCESS

return FAILURE

15

Rigid body dynamics equations

M(q)d+C(q,q)+G(q) =7

Cis a vector with Coriolis plus centrifugal terms

M(q)4+C(q,a)q+G(q) =7

C is a matrix with Coriolis plus centrifugal terms

M(q)g+h(q,q) =1

16

Joint Space Method

Choose a desired acceleration ¢; that implies a PD-like behavior
around the reference trajectory!

G = G+ Kp(q®' — ar) + Ka(d® — ¢¢)

!

M(q) §* + F(q,q) =

This is a standard and convenient way of tracking a
reference trajectory when the robot dynamics are
known: all the joints will behave exactly like a 1D point
mass around the reference trajectory!

17

Inverse dynamics control in a nutshell

1 Given g, q and q , compute torque commands 7 that achieve desired
acceleration g% .

1 Given a referenceq’ (t) find7(t) such that resultingq(7(%)) followsq" (t)
1 We assume we can measure q and q
a1 We set 7 = M§® + h, and now we must compute desired §°

‘=4 -K,(a—-q") -K,(q—-q")
R — SR -

€ & €

18

Simpler control laws for manipulator

r = —Kaé — Kpe + g(a)

Pl
PD gravity torque

Even simpler is PID control:

T=—-Kq&— Kye + fg K;e(s)ds

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID

19

Inverse Dynamics control as optimisation problem

1 As for inverse kinematics, we can write a least square problem:

(7%,4") = argmin [|§ — §°|”

Subject to T = Mq -+ h

1 The optimal solution to this is exactly the ID control law if we set
e d . . .
4d°=4d" -Kp(a—q") - Ki(a—q")

1 So there may be no real advantage here, but the more general framing is

useful for more complex problems
20

Least Square Problem (LSP) (reminder)

J LSP taxonomy:
1 An L, norm cost ||Ax - b||?

1 Possibly linear inequality / equality constraints (Cx <=d ; D x = x)

1 LSPs are a sub-class of convex Quadratic Problems (QPs) which have:
1 Quadratic cost xTH x + hTx , with H>=0

1 Possibly linear inequality / equality constraints (Cx <=d ; D x = x)

1 LSPs and QPs can be solved extremely fast with off-the-shelf software
=> compatible with real-time control loops (~ 1 KHz)
21

Main advantage of optimisation Is constraints

1 e.qg., adding torque limits is much more straightforward:

(7%,4") = argmin [|§ — §°|”

Subject to T = Mq -+ h
T <71<71T"

22

Main advantage of optimisation Is constraints

1 Assuming constant aceleration at each time step,
q(t + At) = q(t) + Atq
1 Joint velocities constraints:
(7, §*) = aromin || — &

Subject to T = Mq —|— h
7T <7< Tt
q(t)” < qt) + Atg < q(t)*

23

Optimal control

min l(x(t) u(t))dt + lT(x(T))

X,U

SO =T0OMO)

Terminal cost

1 X and U are functions of t:
X:teR - x(t) e R™

U:teR — u(t) eR™

Make sure you understand both TO labs

1 The terminal time T is fixed

24

Trajectory optimisation (tutorials 6 and 7)

25

	Slide 1: Advanced Robotics
	Slide 2: Exam: MAYBE NOT UP TO DATE!
	Slide 3: Exam Topics
	Slide 4: Homogeneous Transformation Matrix trick
	Slide 5: Special groups for rotations
	Slide 6: Kinematic chain and map
	Slide 7: Forward / inverse kinematics
	Slide 8: Solution to the unconstrained IK problem:
	Slide 9: IK with constraints: quadratic programming
	Slide 10: Generalising the notion of task
	Slide 11: IK vs IG
	Slide 12: The configuration space (Lozano-Peréz 83)
	Slide 13: 2 manifolds (subsets) for C
	Slide 14: Sampling based motion planning summary
	Slide 15: Basic RRT algorithm – single query variant
	Slide 16: Rigid body dynamics equations
	Slide 17
	Slide 18: Inverse dynamics control in a nutshell
	Slide 19: Simpler control laws for manipulator
	Slide 20: Inverse Dynamics control as optimisation problem
	Slide 21: Least Square Problem (LSP) (reminder)
	Slide 22: Main advantage of optimisation is constraints
	Slide 23: Main advantage of optimisation is constraints
	Slide 24: Optimal control
	Slide 25: Trajectory optimisation (tutorials 6 and 7)

