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Course objective (reminder):

Control a robot in an environment such that it accomplishes a motion task

Model of the robot (and the environment)

❏ Geometry / Dynamics state

❏ Constraints (collisions, forces etc)

Mathematical definition of a task as a (differentiable) function

❏ f(q) = 0 means the task is satisfied

Motion generated using an optimal control formulation

Let’s start with this
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Let’s start with this...

... But before that ... Let’s talk about optimisation (just a bit)



Lecture objective:

Starting from well-known notions from secondary school:

❏ Progressively get familiar with the concept of optimisation

❏ Brush-off basic Matrix operations

Your objectives for the lecture:

❏ The concept of minimising an objective through gradient analysis

❏ The notion of constraint (we probably won’t have time)

NB: Today’s techniques don’t work in most cases in robotics (because of non linearities)

This is a new lecture based on last year’s observations

Any feedback is welcome. This lecture might not seem like a robotics one but it is.



Back to secondary school

Given two samples (x1,y1) and (x2,y2) 

reconstruct a trajectory y=f(x)

❏ Assuming f(x) is linear (follows a line)

Example of application – 1D robot

❏ x axis is time 

❏ y axis is position 

❏ (x,y) state punctually estimated using on board-

sensing => noise

x1 x2

y1

y2



How do we solve this ?

Given two samples (x1,y1) and (x2,y2) 

reconstruct a trajectory y=f(x)

❏ Assuming f(x) is linear (follows a line)

x1 x2

y1

y2

Let’s work on the board. Solution on slides afterwards
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Solving the equations in matrix form

Given two samples (x1,y1) and (x2,y2) 

reconstruct a trajectory y=f(x)

❏ Assuming f(x) is linear (follows a line)



The unknown is vectors in lower case bold
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Solving the equations in matrix form

Given two samples (x1,y1) and (x2,y2) 

reconstruct a trajectory y=f(x)

❏ Assuming f(x) is linear (follows a line)



The unknown is 

x1 x2

y1

y2

vectors in lower case bold

Matrices in upper case bold

Exercise: calculate the inverse of X and check that you find the desired solution

What if X is not invertible?



What if we consider n > 2 samples?

❏ Noisy sensors / actuators => not all points on a line

x1 x3
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Optimising an objective

❏ Try to approximate “as best as possible”:

Minimise cost / error OR maximise a reward (same thing)

❏ What objective?

❏ If perfect match exists, we want this

❏ On average all points are “close enough”
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Optimising an objective

❏ Try to approximate “as best as possible”:

Minimise cost / error OR maximise a reward (same thing)

❏ What objective?

❏ If perfect match exists, we want this

❏ On average all points are “close enough”

❏ Minimise the residual error between sample and line prediction:

Square it to deal with negative values:

x1 x3

y1

y3

x2

y2

Does this satisfy our objectives?



How to minimise l(w)?

❏ Minimise                                  where

❏ Matrix form is

❏ We thus want to find the minimum of 



How to minimise l(w)? 

❏ Necessary (not sufficient) condition for a minimum: gradient is 0 (stationary point)



To minimise l(w) we compute the gradient



To minimise l(w) we compute the gradient

Objective: set this gradient to 0



To minimise l(w) we compute the gradient
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Optimum at gradient = 0

Transpose of a scalar is equal to the scalar



Optimum at gradient = 0

Exact vs approximate solution depends

on whether X is invertible!

Although pseudo-inverse not always defined (underconstrained)

Transpose of a scalar is equal to the scalar



In conclusion

❏ Optimisation is essentially working with the gradients of a function

❏ Setting it to 0 does not guarantee global optimum (except in some cases)

❏ We need to be able to invert matrices / approximate something close enough

❏ Least squares is a widely used technique

❏ Constraints require extra work => Can we set constraints into the cost ?

❏ Inversion is really a problem (numerical instability)

❏ Exercice. What is y=f(y) is a polynomial of degree 3 (or higher) ? Would

unconstrained least square still work?



Homework for next week

❏ Self run the python tutorial if you need

❏ Make sure your environment is setup on DICE and run tutorial 0

❏ Ask questions on Piazza EdStem if you do not understand something
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