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Course objective (reminder):

Control a robot in an environment such that it accomplishes a motion task

Model of the robot (and the environment)

@ Geometry / Dynamics statD Let's start with this

1 Constraints (collisions, forces etc)

Mathematical definition of a task as a (differentiable) function

1 f(gq) = 0 means the task is satisfied

Motion generated using an optimal control formulation



Course objective (reminder):

Control a robot in an environment such that it accomplishes a motion task

Model of the robot (and the environment)

@ Geometry / Dynamics statD Let's start with this...

... But before that ... Let’s talk about optimisation (just a bit)

1 Constraints (collisions, forces etc)

Mathematical definition of a task as a (differentiable) function

1 f(gq) = 0 means the task is satisfied

Motion generated using an optimal control formulation



Lecture objective:

Starting from well-known notions from secondary school:
1 Progressively get familiar with the concept of optimisation

1 Brush-off basic Matrix operations

Your objectives for the lecture:
1 The concept of minimising an objective through gradient analysis
1 The notion of constraint (we probably won’t have time)

NB: Today’s techniques don’t work in most cases in robotics (because of non linearities)

This is a new lecture based on last year's observations
Any feedback is welcome. This lecture might not seem like a robotics one but it is.



Back to secondary school

Given two samples (x,,y,) and (X,,Y,)
reconstruct a trajectory y=f(x)

d Assuming f(x) is linear (follows a line) A
Yo 1+ o
Example of application — 1D robot
Yi + o
1 x axis is time
1y axis is position | >
Xq X,

 (x,y) state punctually estimated using on board-
sensing => noise



How do we solve this ?

Given two samples (x;,y;) and (X,,Y,)
reconstruct a trajeCtO I’y y:f(X) Let’s work on the board. Solution on slides afterwards

d Assuming f(x) is linear (follows a line) A

Yo +
Y1 +

v



How do we solve this ?

Given two samples (x,,y,) and (X,,Y,)
reconstruct a trajectory y=f(x)

d Assuming f(x) is linear (follows a line) A

Y1 = Wok1 + W1

— Yo o
Yo = WoT2 + W1

Y1 +

The unknown is W = [wg, w1] € R? vectors in lower case bold

v



How do we solve this ?

Given two samples (x,,y,) and (X,,Y,)
reconstruct a trajectory y=f(x)

d Assuming f(x) is linear (follows a line) A
Y1 = wox1 + Wy
Yo +
Yo = WoT2 + Wy
Y1 +
The unknown is W = [wg, w1] € R? vectors in lower case bold
Y1 — Y2 = wo(x1 — T2)
oY1= Y2 X1 Xz

wo
L1 — X2

w1 = Y1 — Woxq




Solving the equations in matrix form

Given two samples (x,,y,) and (X,,Y,)
reconstruct a trajectory y=f(x)

1 Assuming f(x) is linear (follows a line)

Y1 = WoT1 + W1

= Yo +
Yo = WoT2 + W1

Y1 +

The unknown is W = [wg, w1] € R? vectors in lower case bold




Solving the equations in matrix form

Given two samples (x,,y,) and (X,,Y,)
reconstruct a trajectory y=f(x)

d Assuming f(x) is linear (follows a line) A

Y1 = Wok1 + W1

= Yo +
Y2 = WoT2 + W1
Y1 +

The unknown is W = [wg, w1] € R? vectors in lower case bold

v

yi| _ |71 1] Jwo | |

Y2 o 1| |un Matrices in upper case bold X, X,
N N——

y X W



Solving the equations in matrix form

Given two samples (x,,y,) and (X,,Y,)
reconstruct a trajectory y=f(x)

d Assuming f(x) is linear (follows a line) A

Y1 = Wok1 + W1

— Yo o
Yo = WoT2 + W1
Y1 +

The unknown is W = [wg, w1] € R? vectors in lower case bold
yi| _ |r1 1 |wo , , R
Y2 o 1| |un Matrices in upper case bold X, X,
N N——
y X w

w=X"ly



Solving the equations in matrix form

Given two samples (x,,y,) and (X,,Y,)
reconstruct a trajectory y=f(x)

d Assuming f(x) is linear (follows a line) A
Y1 = Wox1 + W1
Yo +
Y2 = WoT2 + W1
_ Y1 +
The unknown is W = [wg, w1] € R? vectors in lower case bold
yi| _ |71 1] Jwo , , .
Y2 o 1| |un Matrices in upper case bold X, X,
N N——
y X w
w=X"ly What if X is not invertible?

Exercise: calculate the inverse of X and check that you find the desired solution




What if we consider n > 2 samples?

1 Noisy sensors / actuators => not all points on a line

Yz 4+ o

Yo +
Yi +




Optimising an objective

1 Try to approximate “as best as possible™:

Minimise cost / error OR maximise a reward (same thing)

1 What objective?

1 If perfect match exists, we want this

1 On average all points are “close enough”

Y3 4
Yo -

Y1 -

v



Optimising an objective

1 Try to approximate “as best as possible™:

Minimise cost / error OR maximise a reward (same thing) 53 T °
2 - °
1 What objective? .l
1 If perfect match exists, we want this
1 On average all points are “close enough” . . X >

1 Minimise the residual error between sample and line prediction:
Ty = Yi — (w0$i —I—wl),V’L — {17 . ,’I’L}

Square it to deal with negative values:

n
_ 2
l(W) o Z Ti Does this satisfy our objectives?
1=1



How to minimise I(w)?

1 Minimise (w)=> r} where r =y — (woz; +wi),¥i={1,...,n}
1=1

J We thus want to find the minimum of  i(w) =r'r = (y — Xw)! (y — Xw)

1 Matrix form is



How to minimise I(w)?

1 Necessary (not sufficient) condition for a minimum: gradient is O (stationary point)




To minimise l(w) we compute the gradient




To minimise l(w) we compute the gradient

Obijective: set this gradient to O




To minimise l(w) we compute the gradient




To minimise l(w) we compute the gradient

Chain rule:

2 flo() = £(g(x)) - o (x)




To minimise l(w) we compute the gradient

B B ol 0l 9
Vwl(w) d—w(r r {81007 3101] cR
d d
- (2
Chain rule:
d
Aoy, dri — f(g(x)) = f'(g(x)) - ¢' ()
dW (T’LZ) - 27‘74 dW d.ﬁU




To minimise l(w) we compute the gradient

i Chain rule:
d
L (y2) =9, 20 < o)) = (o)) '@
d r.\_o1dr
E(r r) =2r -




To minimise l(w) we compute the gradient

d o  pdr
aw T T =2 oy




To minimise l(w) we compute the gradient

dw:dw(y_xw)
d
= —(—X
dw( w)
d 7 dr dr
— = r° — Rl
alw(r r) r dw dw X




To minimise l(w) we compute the gradient

dw:dw(y_xw)
d
= —(—X
dw( w)
d 7 dr dr
— = r° — Rl
alw(r r) r dw dw X

- (r’r) = 2rT (= X)
=2(y — Xw)" (-X)




Optimum at gradient = 0



Optimum at gradient = 0

2y — Xw)T(=X) = 0
(y — Xw)T(=X) = 0
((y = Xw)"(=X))" = 0

Transpose of a scalar is equal to the scalar




Optimum at gradient = 0

2(y — Xw)" (-X) =0
(y = Xw)" (-X) =0

((y - XW)T(—X))T =0 Transpose of a scalar is equal to the scalar

(X)) (y = Xw) =0 (AB)" =B"AT (A")" =4




Optimum at gradient = 0

2(y — Xw)" (-X) =0
(y = Xw)" (-X) =0

((y - XW)T(—X))T =0 Transpose of a scalar is equal to the scalar
(X)) (y = Xw) =0 (AB)" =B"AT (A")" =4
X'Xw = X"y

w= (XTX)"1X"y




Optimum at gradient = 0

2(y — Xw)" (-X) =0
(y = Xw)" (-X) =0

((y - XW)T(—X))T =0 Transpose of a scalar is equal to the scalar
(X)) (y = Xw) =0 (AB)" =B"AT (A")" =4
X'Xw =X"y

W = (XTX)—leyJ
pseudo-inverse of X




Optimum at gradient = 0

2(y — Xw)" (=X) =0

(y —Xw)' (-=X) =0

((y —Xw)" (=X))" =0

(-X)"(y —Xw) =0
XT'Xw =Xy

Transpose of a scalar is equal to the scalar

(AB)" =BTAT (AT)YT = A

v

W = SXTX)_IXTJyJ

pseudo-inverse of X

w=X"ly

v




Optimum at gradient = 0

2(y — Xw)" (=X) =0

(y —Xw)' (-=X) =0

((y —Xw)" (=X))" =0

(-X)"(y —Xw) =0
XT'Xw =Xy

Transpose of a scalar is equal to the scalar

(AB)" =BTAT (AT)YT = A

v

W = EXTX)_IXTJyJ

pseudo-inverse of X

Exact vs approximate solution depends W — X_ly
on whether X is invertible!
Although pseudo-inverse not always defined (underconstrained)

v




In conclusion

1 Optimisation is essentially working with the gradients of a function
1 Setting it to O does not guarantee global optimum (except in some cases)

1 We need to be able to invert matrices / approximate something close enough

1 Least squares is a widely used technigue
1 Constraints require extra work => Can we set constraints into the cost ?

 Inversion is really a problem (numerical instability)

1 Exercice. What is y=f(y) is a polynomial of degree 3 (or higher) ? Would
unconstrained least square still work?



Homework for next week

1 Self run the python tutorial if you need
1 Make sure your environment is setup on DICE and run tutorial O

1 Ask guestions on Piazza EdStem if you do not understand something
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