
Advanced Robotics

Steve Tonneau School of Informatics

University of Edinburgh

Rotations, placements, joint maps

Forward geometry

Reading for this week

❏ Siciliano, B., et al., Robotics: Modelling, Planning and Control.

Chapter 2.1 => 2.10 (note the slight difference in notation)

3

How to describe where a robot is in the world?

4

How to describe where a robot is in the world?
you are

5

(Where am I in

relation to the world?)

World

Frame

Local

Frame

Recap: What Tools Do We Need?

6

(Where am I in

relation to the world?)

World

Frame

Local

Frame

Recap: What Tools Do We Need?

More generally, where is any point on the robot located in relation to the world or to each other?

• The 2 dimensions are denoted using x and y

X and Y unit, orthogonal unit vectors

• An origin is defined where x = 0 and y = 0

• Location on the plane represented as a vector:

• Coordinates can be positive as well as negative

Coordinates: 2D Definition – Orthonormal basis

Super fast recap: interrupt as needed

3D extension is straightforward

Points represented wrt an origin orthonormal frame O

Convention for axis choice: right hand rule

“X forward”

O

Super fast recap: interrupt as needed

Given two points represented in the same frame:

The Euclidian distance d between the points is :

x y

z

Euclidian distance

p1

p2

Change of frame

A point p can be represented wrt to a translated frame using Chasles relation:

x y

z

p1

A

O

p r1

O1

O

v
Ap = - Op1 + Op

(Chasles relation)

Representation of spatial relation

The coordinates in previous examples

have all axes aligned.

So what is still missing in a more

general case?

Rotational representation

Rigid Body Position & Pose

Pose = Position + OrientationPosition

Example: a 2D Rotation

Transformation from O to O1 : rotation of angle (around z axis)

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x

y

x’

y’

O1

O

p

x

y

x1

y1

Example: a 2D Rotation

Transformation from O to O1 : rotation of angle (around z axis)

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x = |p|2 * cos()

y = |p|2 * sin ()

x

y

O

p

x

y

(SOH CAH TOA)

Example: a 2D Rotation

Transformation from O to O1 : rotation of angle (around z axis)

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x = |p|2 * cos()

y = |p|2 * sin ()

x

y

x’

y’

O1

O

p

x

y

x1

y1

(SOH CAH TOA)

Example: a 2D Rotation

Transformation from O to O1 : rotation of angle (around z axis)

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x = |p|2 * cos()

y = |p|2 * sin ()

x

y

x’

y’

O1

O

p

x

y

x1 = |p|2 * cos(-)

y1 = |p|2 * sin (-)

x1

1y

(SOH CAH TOA)

Example: a 2D Rotation

Transformation from O to O1 : rotation of angle (around z axis)

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x = |p|2 * cos()

y = |p|2 * sin ()

x

y

x’

y’

O1

O

p

x

y

x1 = |p|2 * cos(-) = |p|2 [cos() cos() + sin () sin()]

y1 = |p|2 * sin (-) = |p|2 [sin () cos() - cos() sin()]

x1

y1

(SOH CAH TOA)

Example: a 2D Rotation

Transformation from O to O1 : rotation of angle (around z axis)

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x = |p|2 * cos()

y = |p|2 * sin ()

x

y

x’

y’

O1

O

p

x

y

x1 = |p|2 * cos(-) = |p|2 [cos() cos() + sin () sin()]

y1 = |p|2 * sin (-) = |p|2 [sin () cos() - cos() sin()]

x1 = x cos() + y sin()

y1 = y cos() - x sin() x1

y1

(SOH CAH TOA)

Matrix form of the rotation

R is orthogonal, which means that its inverse is also its transpose, implying:

x1 = x cos() + y sin()

y1 = y cos() - x sin()

Verify as an exercise that (R-1) = RT

Counter-intuitive

rotation by -

rotation by

R is a rotation matrix

❏ Self corrective notation:

1
0

« from O representation into frame O1 representation »

0

1

« from O1 representation into frame O representation»

Pure rotations in 2D and 3D – SO(2) and SO(3)

The sets of all matrices (with n = 2 or 3), such that

are the algebraic groups called SO(2) and SO(3) for Special Orthogonal groups.

Any pure rotation can be represented with a matrix of SO(n), and the matrix

multiplication is the group operator that applies the rotation.

<=> « Apply rotation R1 to p, then apply rotation R2 to the result »

More on SO(3) and other representations tomorrow / at the end of the class

Simple Rotation Matrices

• 2D • 3D – Any rotation obtained by composing:

Composing rotations and translations

t vector and frame independent

The group of all transformations that

consist in 3D rotations, translations, or

arbitrary combinations of them is

called the Special Euclidian group SE(3).

Again more tomorrow

t

p

A

B

Homogeneous Transformation Matrix trick

❏ => annoying to write (especially when composing)

❏ This operation can be written in matrix form:

❏ With

Composition of Transformations in SE(3)

p

Summary and todos

An element of the group…. Can be represented as …

Rotation matrix

quaternion

A velocity ?

rotation

displacement translation rotation

A spatial

velocity ?

Homogeneous

matrix

Summary and todos

An element of the group…. Can be represented as …

Rotation matrix

quaternion

A velocity ?

rotation

displacement translation rotation

A spatial

velocity ?
Why is it so complicated to represent a rotation ?

Answer tomorrow

Homogeneous

matrix

Joint maps and kinematic tree

29

(Where am I in

relation to the world?)

World

Frame

Local

Frame

We know how to describe a robot position in the world

30

That does not tell us how to do this:

Today: How to describe the robot internal state ?

❏ Legged / manipulator robots are articulated

❏ We need to describe efficiently the robot posture, or configuration

❏ What do you suggest?

31

Kinematics?

• Move all the joints (articulations) in a coordinated way such that the end-
effector makes the desired movement

What relationship between the end-effector and the joint state ?

• when we know/set the joint state,
where is the end-effector?

• when we change the joint state,
how does the end-effector change position?

• Control: how to modify the joint state to reach a
desired target ? (later, what command to send to the
motors to achieve this?)

End-effector(s)

32

The kinematic tree

❏ Robot posture / configuration can be described by a set of frames

❏ Where do we set the frames? Is there a compact way to describe the posture?

What is fixed / variable in the robot description ?
33

©Senthil Kumar Jagatheesaperumal

?

Joint definition

❏ A joint is a mechanical constraint between the placement of two rigid bodies

A and B.

❏ It limits the placements of B with respect to A (his parent)

❏ Mathematically, this results on a placement AMB to have a specific form

C
A

B

Constant link transformations:

joint transformations:

revolute joint:  rotation along an axis (e.g. X) 

prismatic joint:  translation along an axis (eg X)

A subset of the possible joint Types

35

The configuration space (Lozano-Peréz 83)

❏ Robot posture is a point q in the configuration space C, of dimension n, or n+6 if

root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)

❏ Each internal dof represented by a joint parameter, subset of q

❏ If using quaternions to represent free-flyer rotation, q is represented with n+7 != n+6 variables

36Configuration space 𝐶3D environment 𝑊

q is used to

describe both a

quaternion and a

configuration in the

littérature …

Kinematic StructuresKinematic chain and map

Generally, frames placed as follows to

simplify the variable transformations

Denavit–Hartenberg (D-H) Convention

Black placements are constant

Red placement are functions of q

37

Point of interest often

not on effector frame origin

Can also be a tree

38

M1

M2

M1(q1)

M3

M2(q2)

M4

M3(q3)

M4(q4)

Me

Forward and inverse geometry

❏ The computation of any map f(q) relates to forward geometry

FG: q x = f(q) , x in SE(3)

❏ The inverse problem, called inverse geometry, consists,

given a desired x*, in finding a q such that f(q) = x*

IG: x* q = f-1(x*)

In the interesting cases, f is almost never invertible => numerical approaches

through optimisation:

Search q such that f(q) = x* <=> min distance(f(q), x*) => end of tutorial1

Analytical Inverse Geometry +

intro to the jacobian matrix

40

A really simple articulated robot

❏ 1 Dof, unit norm link (clock)

❏ FG:

❏ IG:

❏ This problem has an analytical solution. When solution exists, analytical IG

defined if num (dof) <= dim(task) (necessary condition)

❏ What if we did not have an analytical solution?

41

x

x’

O
x

y

x = cos()

y = sin ()

A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target: p* = [- ,]

42

x
O

x = cos()

y = sin ()

pcur

p*

A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target: p* = [- ,]

❏ The partial derivatives might give us information

Local derivative indicate how an infinitesimal change in configuration affects p

43

x

x = cos()

y = sin ()

linearisation

A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target: p* = [- ,]

❏ The partial derivatives might give us information

44

x
O

x = cos()

y = sin ()

Toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target: p* = [- ,]

❏ The partial derivatives might give us information

45

x
O

x = cos()

y = sin ()

A gradient descent approach

❏ Slope of the tangent at pi/2

❏ Thus, local linear approximation of Phi

❏ Locally, if , x (not true if we increase too much)

❏ Nothing to say about y?

❏ To reach [- ,], we have an idea of a baby step to make:

❏ Increase a little. If target is reached, we won, otherwise…

❏ …start again: compute the new partial derivatives, slope etc
46

Gradient descent => find the minimum of a function

❏ Here distance between current position / target can be used as such function

❏ Trying to find the global minima will not always work…

47Exercise: compute partial derivatives for an arm with 2 unit length axes (2 dofs, ie 2 angle values)

	Slide 1: Advanced Robotics
	Slide 2: Reading for this week
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Change of frame
	Slide 11: Representation of spatial relation
	Slide 12: Rigid Body Position & Pose
	Slide 13: Example: a 2D Rotation
	Slide 14: Example: a 2D Rotation
	Slide 15: Example: a 2D Rotation
	Slide 16: Example: a 2D Rotation
	Slide 17: Example: a 2D Rotation
	Slide 18: Example: a 2D Rotation
	Slide 19: Matrix form of the rotation
	Slide 20: R is a rotation matrix
	Slide 21: Pure rotations in 2D and 3D – SO(2) and SO(3)
	Slide 22: Simple Rotation Matrices
	Slide 23: Composing rotations and translations
	Slide 24: Homogeneous Transformation Matrix trick
	Slide 25: Composition of Transformations in SE(3)
	Slide 26: Summary and todos
	Slide 27: Summary and todos
	Slide 28: Joint maps and kinematic tree
	Slide 29
	Slide 30
	Slide 31: Today: How to describe the robot internal state ?
	Slide 32
	Slide 33: The kinematic tree
	Slide 34: Joint definition
	Slide 35
	Slide 36: The configuration space (Lozano-Peréz 83)
	Slide 37: Kinematic chain and map
	Slide 38: Can also be a tree
	Slide 39: Forward and inverse geometry
	Slide 40: Analytical Inverse Geometry + intro to the jacobian matrix
	Slide 41: A really simple articulated robot
	Slide 42: A toy problem
	Slide 43: A toy problem
	Slide 44: A toy problem
	Slide 45: Toy problem
	Slide 46: A gradient descent approach
	Slide 47: Gradient descent => find the minimum of a function

