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Rotations, placements, joint maps

Forward geometry



Reading for this week

❏ Siciliano, B., et al., Robotics: Modelling, Planning and Control. 

Chapter 2.1 => 2.10 (note the slight difference in notation)
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How to describe where a robot is in the world?
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How to describe where a robot is in the world?
you are 
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(Where am I in 

relation to the world?)
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Recap: What Tools Do We Need?
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(Where am I in 
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World 
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Recap: What Tools Do We Need?

More generally, where is any point on the robot located in relation to the world or to each other? 



• The 2 dimensions are denoted using x and y

X and Y unit, orthogonal unit vectors

• An origin is defined where x = 0 and y = 0

• Location on the plane represented as a vector:

• Coordinates can be positive as well as negative

Coordinates: 2D Definition – Orthonormal basis

Super fast recap: interrupt as needed



3D extension is straightforward

Points represented wrt an origin orthonormal frame O

Convention for axis choice: right hand rule

“X forward” 

O

Super fast recap: interrupt as needed



Given two points represented in the same frame: 

The Euclidian distance d between the points is :

x y

z

Euclidian distance

p1

p2



Change of frame

A point p can be represented wrt to a translated frame using Chasles relation:

x y

z

p1

A

O

p r1

O1

O

v
Ap = - Op1 + Op

(Chasles relation)



Representation of spatial relation

The coordinates in previous examples 

have all axes aligned. 

So what is still missing in a more 

general case? 

Rotational representation



Rigid Body Position & Pose

Pose = Position + OrientationPosition



Example: a 2D Rotation

Transformation from O to O1 : rotation of angle    (around z axis) 

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x
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x1 = |p|2 * cos(  - ) 
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Example: a 2D Rotation

Transformation from O to O1 : rotation of angle    (around z axis) 

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x = |p|2 * cos(  ) 

y = |p|2 * sin (  )   
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x1 = |p|2 * cos(  - ) = |p|2 [ cos( ) cos( ) + sin ( ) sin( ) ]

y1 = |p|2 * sin (  - ) = |p|2 [ sin ( ) cos( ) - cos( ) sin( ) ]  

x1

y1

(SOH CAH TOA)



Example: a 2D Rotation

Transformation from O to O1 : rotation of angle    (around z axis) 

Given Op = (x, y) vector in O frame, how to calculate 1p ?

x = |p|2 * cos(  ) 

y = |p|2 * sin (  )   
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O1

O
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x

y

x1 = |p|2 * cos(  - ) = |p|2 [ cos( ) cos( ) + sin ( ) sin( ) ]

y1 = |p|2 * sin (  - ) = |p|2 [ sin ( ) cos( ) - cos( ) sin( ) ]  

x1 = x cos( ) + y sin( ) 

y1 = y cos( ) - x sin( ) x1

y1

(SOH CAH TOA)



Matrix form of the rotation

R is orthogonal, which means that its inverse is also its transpose, implying:

x1 = x cos( ) + y sin( ) 

y1 = y cos( ) - x sin( ) 

Verify as an exercise that (R-1) = RT

Counter-intuitive 

rotation by -

rotation by



R is a rotation matrix

❏ Self corrective notation:

1
0

« from O representation into frame O1 representation »

0

1

« from O1 representation into frame O representation»



Pure rotations in 2D and 3D – SO(2) and SO(3)

The sets of all matrices                           (with n = 2 or 3), such that

are the algebraic groups called SO(2) and SO(3) for Special Orthogonal groups.

Any pure rotation can be represented with a matrix of SO(n), and the matrix 

multiplication is the group operator that applies the rotation. 

<=> « Apply rotation R1 to p, then apply rotation R2 to the result »

More on SO(3) and other representations tomorrow / at the end of the class



Simple Rotation Matrices

• 2D • 3D – Any rotation obtained by composing:



Composing rotations and translations

t vector and frame independent

The group of all transformations that

consist in 3D rotations, translations, or 

arbitrary combinations of them is 

called the Special Euclidian group SE(3).

Again more tomorrow

t

p

A

B



Homogeneous Transformation Matrix trick

❏ => annoying to write (especially when composing)

❏ This operation can be written in matrix form:

❏ With 



Composition of Transformations in SE(3)

p



Summary and todos

An element of the group….                                Can be represented as …

Rotation matrix

quaternion

A velocity ?

rotation

displacement translation rotation

A spatial 

velocity ?

Homogeneous

matrix



Summary and todos

An element of the group….                                Can be represented as …

Rotation matrix

quaternion

A velocity ?

rotation

displacement translation rotation

A spatial 

velocity ?
Why is it so complicated to represent a rotation ?

Answer tomorrow

Homogeneous

matrix



Joint maps and kinematic tree
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(Where am I in 

relation to the world?)

World 

Frame

Local 

Frame

We know how to describe a robot position in the world
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That does not tell us how to do this:



Today: How to describe the robot internal state ?

❏ Legged / manipulator robots are articulated

❏ We need to describe efficiently the robot posture, or configuration

❏ What do you suggest?

31



Kinematics?

• Move all the joints (articulations) in a coordinated way such that the end-
effector makes the desired movement

What relationship between the end-effector and the joint state ?

• when we know/set the joint state, 
where is the end-effector?

• when we change the joint state, 
how does the end-effector change position?

• Control: how to modify the joint state to reach a 
desired target ? (later, what command to send to the 
motors to achieve this?)

End-effector(s)

32



The kinematic tree

❏ Robot posture / configuration can be described by a set of frames

❏ Where do we set the frames? Is there a compact way to describe the posture?

What is fixed / variable in the robot description ? 
33

©Senthil Kumar Jagatheesaperumal

?



Joint definition

❏ A joint is a mechanical constraint between the placement of two rigid bodies 

A and B.

❏ It limits the placements of B with respect to A (his parent)

❏ Mathematically, this results on a placement AMB to have a specific form

C
A

B



Constant link transformations:

joint transformations:

revolute joint:            rotation along an axis (e.g. X) 

prismatic joint:             translation along an axis (eg X)

A subset of the possible joint Types

35



The configuration space (Lozano-Peréz 83)

❏ Robot posture is a point q in the configuration space C, of dimension n, or n+6 if

root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)

❏ Each internal dof represented by a joint parameter, subset of q

❏ If using quaternions to represent free-flyer rotation, q is represented with n+7 != n+6 variables

36Configuration space 𝐶3D environment 𝑊

q is used to 

describe both a 

quaternion and a 

configuration in the 

littérature …



Kinematic StructuresKinematic chain and map

Generally, frames placed as follows to 

simplify the variable transformations

Denavit–Hartenberg (D-H) Convention

Black placements are constant

Red placement are functions of q

37

Point of interest often

not on effector frame origin



Can also be a tree

38

M1

M2

M1(q1)

M3

M2(q2)

M4

M3(q3)

M4(q4)

Me



Forward and inverse geometry

❏ The computation of any map f(q) relates to forward geometry

FG:  q             x = f(q)  , x in SE(3)

❏ The inverse problem, called inverse geometry, consists,

given a desired x*, in finding a q such that f(q) = x*

IG:  x*             q = f-1(x*)  

In the interesting cases, f is almost never invertible => numerical approaches

through optimisation:

Search q such that f(q) = x*  <=> min distance(f(q), x*)   => end of tutorial1



Analytical Inverse Geometry +

intro to the jacobian matrix

40



A really simple articulated robot

❏ 1 Dof, unit norm link (clock)

❏ FG:

❏ IG:

❏ This problem has an analytical solution. When solution exists, analytical IG 

defined if num (dof) <= dim(task) (necessary condition)

❏ What if we did not have an analytical solution? 

41

x

x’

O
x

y

x  = cos(  ) 

y  = sin (  )   



A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

42

x
O

x  = cos(  ) 

y  = sin (  )   

pcur

p*



A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

❏ The partial derivatives might give us information

Local derivative indicate how an infinitesimal change in configuration affects p

43

x

x  = cos(  ) 

y  = sin (  )   

linearisation



A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

❏ The partial derivatives might give us information
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x
O

x  = cos(  ) 

y  = sin (  )   



Toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

❏ The partial derivatives might give us information

45

x
O

x  = cos(  ) 

y  = sin (  )   



A gradient descent approach

❏ Slope of the tangent at pi/2

❏ Thus, local linear approximation of Phi

❏ Locally, if         , x      (not true if we increase too much)

❏ Nothing to say about y?

❏ To reach [- ,   ], we have an idea of a baby step to make:

❏ Increase a little. If target is reached, we won, otherwise…

❏ …start again: compute the new partial derivatives, slope etc
46



Gradient descent => find the minimum of a function

❏ Here distance between current position / target can be used as such function

❏ Trying to find the global minima will not always work…

47Exercise: compute partial derivatives for an arm with 2 unit length axes (2 dofs, ie 2 angle values)


	Slide 1: Advanced Robotics
	Slide 2: Reading for this week
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Change of frame
	Slide 11:  Representation of spatial relation
	Slide 12: Rigid Body Position & Pose
	Slide 13:  Example: a 2D Rotation
	Slide 14:  Example: a 2D Rotation
	Slide 15:  Example: a 2D Rotation
	Slide 16:  Example: a 2D Rotation
	Slide 17:  Example: a 2D Rotation
	Slide 18:  Example: a 2D Rotation
	Slide 19: Matrix form of the rotation
	Slide 20: R is a rotation matrix
	Slide 21: Pure rotations in 2D and 3D – SO(2) and SO(3)
	Slide 22: Simple Rotation Matrices
	Slide 23: Composing rotations and translations
	Slide 24: Homogeneous Transformation Matrix trick
	Slide 25: Composition of Transformations in SE(3)
	Slide 26: Summary and todos
	Slide 27: Summary and todos
	Slide 28: Joint maps and kinematic tree
	Slide 29
	Slide 30
	Slide 31: Today: How to describe the robot internal state ?
	Slide 32
	Slide 33: The kinematic tree
	Slide 34: Joint definition
	Slide 35
	Slide 36: The configuration space (Lozano-Peréz 83)
	Slide 37: Kinematic chain and map
	Slide 38: Can also be a tree
	Slide 39: Forward and inverse geometry
	Slide 40: Analytical Inverse Geometry + intro to the jacobian matrix
	Slide 41: A really simple articulated robot
	Slide 42: A toy problem
	Slide 43: A toy problem
	Slide 44: A toy problem
	Slide 45: Toy problem
	Slide 46: A gradient descent approach
	Slide 47: Gradient descent => find the minimum of a function

