. THE UNIVERSITY of EDINBURGH

Y- informatics

Advanced Robotics

Rotations, placements, joint maps
Forward geometry

Steve Tonneau School of Informatics
University of Edinburgh

Reading for this week

1 Siciliano, B., et al., Robotics: Modelling, Planning and Control.

Chapter 2.1 => 2.10 (note the slight difference in notation)

How to describe where a robot Is in the world?

How to describe where a ic

Recap: What Tools Do We Need?

(Wheream | in
relation to the world?)

Recap: What Tools Do We Need?

(Wheream | in
relation to the world?)

More generally, where is any point on the robot located in relation to the world or to each other?

Super fast recap: interrupt as needed

Coordinates: 2D Definition — Orthonormal basis

 The 2 dimensions are denoted using x and y

X and Y unit, orthogonal unit vectors N (%,3)
* An origin is defined where x =0andy =0 (-3,1) 2
(0,0)
e Location on the plane represented as a vector: L Lidk | 31 3 ¢ >

°p = [z,y] € R?

N

[}
Ul
N |
ol
w

« Coordinates can be positive as well as negative ‘

Super fast recap: interrupt as needed

3D extension Is straightforward

Points represented wrt an origin orthonormal frame O
O 3
p=[z,y,2] €R

O = (0,0, 0)

Convention for axis choice: right hand rule
“X forward”

Euclidian distance

Given two points represented in the same frame:

°p1 = [z1,91,21] P2 = [72, Y2, 22]

The Euclidian distance d between the points is :

Change of frame

A point p can be represented wrt to a translated frame using Chasles relation:

(Chasles relation)

Representation of spatial relation

The coordinates in previous examples
have all axes aligned.

So what is still missing in a more
general case?

Rotational representation

Rigid Body Position & Pose

Position Pose = Position + Orientation

Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

Yy, X = |pl, * cos(7) (SOH CAH TOA)
y =Ipl>*sin (7)

Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =Ipl, * sin (7)
y X’
AP
Y1 F}A > 9
=X
0 o= >

Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =|pl, *sin (7)
X1 = |pl, * cos(Y-6)
y X’ y1 =pl; * sin (v-0)
AP
ly F}d > 9
=X,
o) o >

Example: a 2D Rotation

Transformation from O to O, : rotation of angle @ (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =1pl, *sin (7)
i = |pl, * cos(Y-6) = |pl, [cos(y) cos() + sin (7) sinf)]
y X’ Y1 =1Ipl; *sin (v-0) = [pl, [sin (v) cos(p) - cosf) sin()]
oA D
Y1 ’Y
|—|: X1 > 9
0 A 1 - | |
1 X o) —ome

cos(a + b) = cosacosb — sinasinb
sin(a + b) = sinacosbh + cosasinb

Example: a 2D Rotation

Transformation from O to O, : rotation of angle @ (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =|pl, * sin (7)
X, = |pl; * cos(Y-6) = [p|, [cos() cos(6) + sin () sinE)]
y X’ Y1 =pl; *sin (v-6) = [pl, [sin () cos() - cosf) sin()]
oA D
" 1 f-}d > 0 X; =xcos(g) +y sin()
X, y, =Yy cos(d) - x sin(d)
0 1 4
> X cox—a) —com

cos(a + b) = cosacosb — sinasinb
sin(a + b) = sinacosbh + cosasinb

Matrix form of the rotation

X, =X cos() +y sin) lmll _ [CO.S(G) sin(O)] [37]
PPy Bty G e— y1] — |—sin(d) cos(d)] |y

A >

R «— Counter-intuitive
rotation by - 6

R is orthogonal, which means that its inverse is also its transpose, implying:

1] = [y][]

Verify as an exercise that (R1) =RT

R IS a rotation matrix

1 Self corrective notation:
pl-lat SOk == '»="Ro%

1R0

« from O representation into frame O, representation »

o= law | [n] ==p °P="Ri'p

\ _J/
« from O, representation into frame O representation»

1R_1
0

(*Ro)” =°R,

Pure rotations in 2D and 3D — SO(2) and SO(3)

. X .
The sets of all matrices R € R" n(wnh n = 2 or 3), such that

R'=R' det(R)=1

are the algebraic groups called SO(2) and SO(3) for Special Orthogonal groups.
Any pure rotation can be represented with a matrix of SO(n), and the matrix
multiplication is the group operator that applies the rotation.

R p— R2 Rl <:> « Apply rotation R1 to p, then apply rotation R2 to the result »

More on SO(3) and other representations tomorrow / at the end of the class

Simple Rotation Matrices

e 2D 3D — Any rotation obtained by composing:
' cost) —sinf 0
R(0) = cost) —sint R.(0) = |sin® cosf O
sinf/ cos# 0 0 |

cosf 0 sind
Ryw): 0 1 0

—sin® 0 cos6

1 0 0
R.(0) =10 cos# —sindb
0 sind@ cosé

Composing rotations and translations

t vector and frame independent

The group of all transformations that
consist in 3D rotations, translations, or
arbitrary combinations of them is

called the Special Euclidian group SE(3).
Again more tomorrow

Homogeneous Transformation Matrix trick

N Ap = ARBBp t => annoying to write (especially when composing)

1 This operation can be written in matrix form:

“p| _ ["Re t| [Pp

1 03 1 1
AM g cR4X4
3 With
BR, —-PRt
B (A -1 A A
My = (4Mp)~ ! = [0,) }

Composition of Transformations in SE(3)

Summary and todos

An element of the group.... Can be represented as ...
r e 30(3) 2 R e R3X3 Rotation matrix
rotation
m € SE(3) ~ R xSO(3) O R3 x R3*3 ~ R*X? Homogeneous

displacement translation rotation

Summary and todos

An element of the group.... Can be represented as ...
r e 30(3) 2 R € R3X3 Rotation matrix
rotation qe€ H ~ R4, ||q|| = 1 quaternion

w € 80(3) ~ RS A velocity ?

m € SE(3) ~ R xSO(3) O R3 x R3*3 ~ R*X? Homogeneous
3 7
displacement translation rotation R X H ~ R
VeEse3)=|"|~RE Al
Why is it so complicated to represent a rotation ? W velocty

Answer tomorrow

Joint maps and kinematic tree

We know how to describe a robot position in the world

(Wheream | in
relation to the world?)

29

That does not tell us how to do this:

30

Today: How to describe the robot internal state ?

1 Legged / manipulator robots are articulated
1 We need to describe efficiently the robot posture, or configuration

1 What do you suggest?

Small
Cube

31

Kinematics?

* Move all the joints (articulations) in a coordinated way such that the end-
effector makes the desired movement

What relationship between the end-effector and the joint state ?

* when we know/set the joint state,
where Is the end-effector?

* when we change the joint state,
how does the end-effector change position?

nd-effector(s)

* Control: how to modify the joint state to reach a
desired target ? (later, what command to send to the

motors to achieve this?) 2

The kinematic tree

1 Robot posture / configuration can be described by a set of frames

Gripper
. (End Effector)

©Senthil Kumar Jagatheesaperumal

1 Where do we set the frames? Is there a compact way to describe the posture?

What is fixed / variable in the robot description ?
33

Joint definition

1 A joint is a mechanical constraint between the placement of two rigid bodies
A and B.

-

= B

A

1 It limits the placements of B with respect to A (his parent)

1 Mathematically, this results on a placement AMg to have a specific form

A subset of the possible joint Types

revolute joint: § € R < rotation along an axis (e.g. X) <

) [
0 cos(0) —sin(6)
Tasn(q) = 0 sin(f) cos(f)
7 -O ’ :

prismatic joint: ¢ € R < translation along an axis (eg X)

) 10 0

" 01 0

’ Tasa@ =19 ¢ 4
= 00 0

= R==1

IHOOC‘FI

35

The configuration space (Lozano-Peréz 83)

1 Robot posture is a point g in the configuration space C, of dimension n, or n+6 if
root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)

1 Each internal dof represented by a joint parameter, subset of g

1 If using quaternions to represent free-flyer rotation, q is represented with n+7 != n+6 variables

gis usedto
describe both a
guaternion and a
configuration in the

littérature ...
(0%
B
Y

3D environment W | Configuration space C | 36

q=|rs| R

Kinematic chain and map

Generally, frames placed as follows to
simplify the variable transformations

Denavit—Hartenberg (D-H) Convention

Black placements are constant

Red placement are functions of g

relative
eff.
C,Mef f offset

Point of interest often
not on effector frame origin

YMesr(q) = Y MA* M4 (@)Y MpPMp (q)P'Mc“Me (q)¢ Mg ¢

37

Can also be a tree

38

Forward and inverse geometry
1 The computation of any map f(q) relates to forward geometry
FG: q — x=1(q) , xin SE(3)

1 The inverse problem, called inverse geometry, consists,
given a desired x*, in finding a g such that f(q) = x*

. * — f-1(v*
IG- X — q - f (X) WMeff(q):WMAAMA'(Q)AIMBBMB'(q)B’MCCMC’(Q)ClMeff

In the interesting cases, f is almost never invertible => numerical approaches
through optimisation:

Search g such that f(g) = x* <=> min distance(f(q), x*) => end of tutoriall

Analytical Inverse Geometry +
INtro to the Jacobian matrix

40

A really simple articulated robot

1 1 Dof, unit norm link (clock) t x =cos(f)
d FG:

(q) = ¢(8) = [cos(0), sin(0)]" ,

o ([z,y]") = atan2(y,) 0

1 This problem has an analytical solution. When solution exists, analytical |G
defined if num (dof) <= dim(task) (necessary condition)

1 What if we did not have an analytical solution?
41

A toy problem

4 Current = pi/2 & peur =0, 1]

 Target: p*=[+v2v2]

A pCUF

X = cos(d)
y =sin ()

42

A toy problem

4 Current = pi/2 & peur =0, 1]

 Target: p*=[+v2v2]

1 The partial derivatives might give us information

0
5p — a_ ¢ (g) 5q linearisation
q

Local derivative indicate how an infinitesimal change in configuration affects p

43

A toy problem

4 Current = pi/2 & peur =0, 1]
 Target: p*=[+v2v2]

1 The partial derivatives might give us information

0 5 °
—H(0) = | 2

o |§

Or .

% sin ()

Oy = cos(6)

4

X = cos(d)
y =sin ()

44

Toy problem

4 Current = pi/2 & peur =0, 1]

4

X = cos(d)
y =sin (6)

 Target: p*=[+v2v2]
1 The partial derivatives might give us information

0 = °

—H(0) = | 2

oo |§

%) o, m T

=T - _ —o(=)=|—1,0

2, sin () h o (2) —1,0]

% _ cos(0)

45

A gradient descent approach

o, m T
5 0(5) = [-1,0

1 Slope of the tangent at pi/2

1 Thus, local linear approximation of Phi
3 Locally, if § 7, x . (not true if we increase @ too much)

1 Nothing to say about y?

1 To reach [-242], we have an idea of a baby step to make:
a Increase @ a little. If target is reached, we won, otherwise...

1 ...start again: compute the new partial derivatives, slope etc

46

Gradient descent => find the minimum of a function

1 Here distance between current position / target can be used as such function

- Trying to find the global minima will not always work...

Exercise: compute partial derivatives for an arm with 2 unit length axes (2 dofs, ie 2 angle values) 47

	Slide 1: Advanced Robotics
	Slide 2: Reading for this week
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Change of frame
	Slide 11: Representation of spatial relation
	Slide 12: Rigid Body Position & Pose
	Slide 13: Example: a 2D Rotation
	Slide 14: Example: a 2D Rotation
	Slide 15: Example: a 2D Rotation
	Slide 16: Example: a 2D Rotation
	Slide 17: Example: a 2D Rotation
	Slide 18: Example: a 2D Rotation
	Slide 19: Matrix form of the rotation
	Slide 20: R is a rotation matrix
	Slide 21: Pure rotations in 2D and 3D – SO(2) and SO(3)
	Slide 22: Simple Rotation Matrices
	Slide 23: Composing rotations and translations
	Slide 24: Homogeneous Transformation Matrix trick
	Slide 25: Composition of Transformations in SE(3)
	Slide 26: Summary and todos
	Slide 27: Summary and todos
	Slide 28: Joint maps and kinematic tree
	Slide 29
	Slide 30
	Slide 31: Today: How to describe the robot internal state ?
	Slide 32
	Slide 33: The kinematic tree
	Slide 34: Joint definition
	Slide 35
	Slide 36: The configuration space (Lozano-Peréz 83)
	Slide 37: Kinematic chain and map
	Slide 38: Can also be a tree
	Slide 39: Forward and inverse geometry
	Slide 40: Analytical Inverse Geometry + intro to the jacobian matrix
	Slide 41: A really simple articulated robot
	Slide 42: A toy problem
	Slide 43: A toy problem
	Slide 44: A toy problem
	Slide 45: Toy problem
	Slide 46: A gradient descent approach
	Slide 47: Gradient descent => find the minimum of a function

