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Reading for this week

1 Siciliano, B., et al., Robotics: Modelling, Planning and Control.

Chapter 2.1 => 2.10 (note the slight difference in notation)



How to describe where a robot Is in the world?




How to describe where a ic




Recap: What Tools Do We Need?

(Wheream | in
relation to the world?)




Recap: What Tools Do We Need?

(Wheream | in
relation to the world?)

More generally, where is any point on the robot located in relation to the world or to each other?



Super fast recap: interrupt as needed

Coordinates: 2D Definition — Orthonormal basis

 The 2 dimensions are denoted using x and y

X and Y unit, orthogonal unit vectors N (%,3)
* An origin is defined where x =0andy =0 (-3,1) 2
(0,0)
e Location on the plane represented as a vector: L Lidk | 31 3 ¢ >

°p = [z,y] € R?

N

[}
Ul
N |
ol
w

« Coordinates can be positive as well as negative ‘




Super fast recap: interrupt as needed

3D extension Is straightforward

Points represented wrt an origin orthonormal frame O
O 3
p=[z,y,2] €R

O = (0,0, 0)

Convention for axis choice: right hand rule
“X forward”




Euclidian distance

Given two points represented in the same frame:

°p1 = [z1,91,21] P2 = [72, Y2, 22]

The Euclidian distance d between the points is :




Change of frame

A point p can be represented wrt to a translated frame using Chasles relation:

(Chasles relation)




Representation of spatial relation

The coordinates in previous examples
have all axes aligned.

So what is still missing in a more
general case?

Rotational representation




Rigid Body Position & Pose

Position Pose = Position + Orientation




Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?




Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

Yy, X = |pl, * cos(7) (SOH CAH TOA)
y =Ipl>*sin (7)




Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =Ipl, * sin (7)
y X’
AP
Y1 F}A > 9
=X
0 o= >



Example: a 2D Rotation

Transformation from O to O, : rotation of angle 6 (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =|pl, *sin (7)
X1 = |pl, * cos(Y-6)
y X’ y1 =pl; * sin (v-0)
AP
ly F}d > 9
=X,
o) o >



Example: a 2D Rotation

Transformation from O to O, : rotation of angle @ (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =1pl, *sin (7)
i = |pl, * cos(Y-6) = |pl, [cos(y) cos() + sin (7) sinf) ]
y X’ Y1 =1Ipl; *sin (v-0) = [pl, [sin (v) cos(p) - cosf) sin() ]
oA D
Y1 ’Y
|—|: X1 > 9
0 A 1 - | |
1 X o) —ome

cos(a + b) = cosacosb — sinasinb
sin(a + b) = sinacosbh + cosasinb



Example: a 2D Rotation

Transformation from O to O, : rotation of angle @ (around z axis) O

Given ©p = (X, y) vector in O frame, how to calculate p ?

y’ Y, X = |pl, * cos(7) (SOH CAH TOA)
— y =|pl, * sin (7)
X, = |pl; * cos(Y-6) = [p|, [cos() cos(6) + sin () sinE) ]
y X’ Y1 =pl; *sin (v-6) = [pl, [sin () cos() - cosf) sin() ]
oA D
" 1 f-}d > 0 X; =xcos(g) +y sin()
X, y, =Yy cos(d) - x sin(d)
0 1 4
> X cox—a) —com

cos(a + b) = cosacosb — sinasinb
sin(a + b) = sinacosbh + cosasinb



Matrix form of the rotation

X, =X cos() +y sin) lmll _ [CO.S(G) sin(O)] [37]
PPy Bty G e— y1] — |—sin(d) cos(d)] |y

A >

R «—  Counter-intuitive
rotation by - 6

R is orthogonal, which means that its inverse is also its transpose, implying:

1] = [y ][]

Verify as an exercise that (R1) =RT



R IS a rotation matrix

1 Self corrective notation:
pl-lat SOk == '»="Ro%

1R0

« from O representation into frame O, representation »

o= law | [n] ==p °P="Ri'p

\ _J/
« from O, representation into frame O representation»

1R_1
0

(*Ro)” =°R,



Pure rotations in 2D and 3D — SO(2) and SO(3)

. X .
The sets of all matrices R € R" n(wnh n = 2 or 3), such that

R'=R' det(R)=1

are the algebraic groups called SO(2) and SO(3) for Special Orthogonal groups.
Any pure rotation can be represented with a matrix of SO(n), and the matrix
multiplication is the group operator that applies the rotation.

R p— R2 Rl <:> « Apply rotation R1 to p, then apply rotation R2 to the result »

More on SO(3) and other representations tomorrow / at the end of the class



Simple Rotation Matrices

e 2D 3D — Any rotation obtained by composing:
' cost) —sinf 0
R(0) = cost)  —sint R.(0) = |sin® cosf O
sinf/  cos# 0 0 |

cosf 0 sind
Ryw): 0 1 0

—sin® 0 cos6

1 0 0
R.(0) =10 cos# —sindb
0 sind@ cosé



Composing rotations and translations

t vector and frame independent

The group of all transformations that
consist in 3D rotations, translations, or
arbitrary combinations of them is

called the Special Euclidian group SE(3).
Again more tomorrow




Homogeneous Transformation Matrix trick

N Ap = ARBBp t => annoying to write (especially when composing)

1 This operation can be written in matrix form:

“p| _ ["Re t| [Pp

1 03 1 1
AM g cR4X4
3 With
BR, —-PRt
B (A -1 A A
My = (4Mp)~ ! = [ 0, ) }



Composition of Transformations in SE(3)




Summary and todos

An element of the group.... Can be represented as ...
r e 30(3) 2 R e R3X3 Rotation matrix
rotation
m € SE(3) ~ R xSO(3) O R3 x R3*3 ~ R*X? Homogeneous

displacement translation rotation



Summary and todos

An element of the group.... Can be represented as ...
r e 30(3) 2 R € R3X3 Rotation matrix
rotation qe€ H ~ R4, ||q|| = 1 quaternion

w € 80(3) ~ RS A velocity ?

m € SE(3) ~ R xSO(3) O R3 x R3*3 ~ R*X? Homogeneous
3 7
displacement translation rotation R X H ~ R
VeEse3)=|"|~RE Al
Why is it so complicated to represent a rotation ? W velocty

Answer tomorrow



Joint maps and kinematic tree



We know how to describe a robot position in the world

(Wheream | in
relation to the world?)

29



That does not tell us how to do this:

30



Today: How to describe the robot internal state ?

1 Legged / manipulator robots are articulated
1 We need to describe efficiently the robot posture, or configuration

1 What do you suggest?

Small
Cube

31



Kinematics?

* Move all the joints (articulations) in a coordinated way such that the end-
effector makes the desired movement

What relationship between the end-effector and the joint state ?

* when we know/set the joint state,
where Is the end-effector?

* when we change the joint state,
how does the end-effector change position?

nd-effector(s)

* Control: how to modify the joint state to reach a
desired target ? (later, what command to send to the

motors to achieve this?) 2



The kinematic tree

1 Robot posture / configuration can be described by a set of frames

Gripper
. (End Effector)

©Senthil Kumar Jagatheesaperumal

1 Where do we set the frames? Is there a compact way to describe the posture?

What is fixed / variable in the robot description ?
33



Joint definition

1 A joint is a mechanical constraint between the placement of two rigid bodies
A and B.

-

= B

A

1 It limits the placements of B with respect to A (his parent)

1 Mathematically, this results on a placement AMg to have a specific form



A subset of the possible joint Types

revolute joint: § € R < rotation along an axis (e.g. X) <

) [
0 cos(0) —sin(6)
Tasn(q) = 0 sin(f) cos(f)
7 -O ’ :

prismatic joint: ¢ € R < translation along an axis (eg X)

) 10 0

" 01 0

’ Tasa@ =19 ¢ 4
= 00 0

= R==1

IHOOC‘FI

35



The configuration space (Lozano-Peréz 83)

1 Robot posture is a point g in the configuration space C, of dimension n, or n+6 if
root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)

1 Each internal dof represented by a joint parameter, subset of g

1 If using quaternions to represent free-flyer rotation, q is represented with n+7 != n+6 variables

gis usedto
describe both a
guaternion and a
configuration in the

littérature ...
(0%
B
Y

3D environment W | Configuration space C | 36

q=|rs| R




Kinematic chain and map

Generally, frames placed as follows to
simplify the variable transformations

Denavit—Hartenberg (D-H) Convention

Black placements are constant

Red placement are functions of g

relative
eff.
C,Mef f offset

Point of interest often
not on effector frame origin

YMesr(q) = Y MA* M4 (@)Y MpPMp (q)P'Mc“Me (q)¢ Mg ¢

37



Can also be a tree

38



Forward and inverse geometry
1 The computation of any map f(q) relates to forward geometry
FG: q — x=1(q) , xin SE(3)

1 The inverse problem, called inverse geometry, consists,
given a desired x*, in finding a g such that f(q) = x*

. * — f-1(v*
IG- X — q - f (X ) WMeff(q):WMAAMA'(Q)AIMBBMB'(q)B’MCCMC’(Q)ClMeff

In the interesting cases, f is almost never invertible => numerical approaches
through optimisation:

Search g such that f(g) = x* <=> min distance(f(q), x*) => end of tutoriall



Analytical Inverse Geometry +
INtro to the Jacobian matrix

40



A really simple articulated robot

1 1 Dof, unit norm link (clock) t x =cos(f)
d FG:

(q) = ¢(8) = [cos(0), sin(0)]" ,

o ([z,y]") = atan2(y, ) 0

1 This problem has an analytical solution. When solution exists, analytical |G
defined if num (dof) <= dim(task) (necessary condition)

1 What if we did not have an analytical solution?
41



A toy problem

4 Current = pi/2 & peur =0, 1]

 Target: p*=[+v2v2 ]

A pCUF

X = cos(d)
y =sin ()

42



A toy problem

4 Current = pi/2 & peur =0, 1]

 Target: p*=[+v2v2 ]

1 The partial derivatives might give us information

0
5p — a_ ¢ (g) 5q linearisation
q

Local derivative indicate how an infinitesimal change in configuration affects p

43



A toy problem

4 Current = pi/2 & peur =0, 1]
 Target: p*=[+v2v2 ]

1 The partial derivatives might give us information

0 5 °
—H(0) = | 2

o |§

Or .

% sin ()

Oy = cos(6)

4

X = cos(d)
y =sin ()

44



Toy problem

4 Current = pi/2 & peur =0, 1]

4

X = cos(d)
y =sin (6)

 Target: p*=[+v2v2 ]
1 The partial derivatives might give us information

0 = °

—H(0) = | 2

oo |§

%) o, m T

=T - _ —o(=)=|—1,0

2, sin () h o (2) —1,0]

% _ cos(0)

45



A gradient descent approach

o, m T
5 0(5) = [-1,0

1 Slope of the tangent at pi/2

1 Thus, local linear approximation of Phi
3 Locally, if § 7, x . (not true if we increase @ too much)

1 Nothing to say about y?

1 To reach [-242], we have an idea of a baby step to make:
a Increase @ a little. If target is reached, we won, otherwise...

1 ...start again: compute the new partial derivatives, slope etc

46



Gradient descent => find the minimum of a function

1 Here distance between current position / target can be used as such function

- Trying to find the global minima will not always work...

Exercise: compute partial derivatives for an arm with 2 unit length axes (2 dofs, ie 2 angle values) 47
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