

Advanced Robotics

SO(3)

Steve Tonneau School of Informatics University of Edinburgh

Summary and todos

An element of the group....

Answer tomorrow

Can be represented as ...

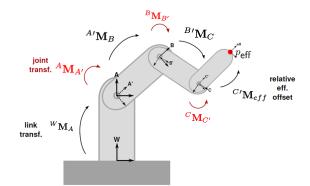
 $r \in SO(3)$ $\mathbf{\Sigma}$ $\mathbf{R} \in \mathbb{R}^{3 \times 3}$ Rotation matrixrotation $\mathbf{q} \in \mathbb{H} \simeq \mathbb{R}^4, \|\mathbf{q}\| = \mathbf{1}$ quaternion $\mathbf{w} \in so(3) \simeq \mathbb{R}^3$ A velocity ?

$$m \in SE(3)$$
 \simeq $\mathbb{R}^3 \times SO(3)$ \simeq $\mathbb{R}^3 \times \mathbb{R}^{3 \times 3} \simeq \mathbb{R}^{4 \times 4}$ Homogeneous
matrixdisplacementtranslation rotation $\mathbb{R}^3 \times \mathbb{H} \simeq \mathbb{R}^7$ Why is it so complicated to represent a rotation ? $\mathcal{V} \in se(3) = \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} \simeq \mathbb{R}^6$ A spatial
velocity ?

Remember what we need

□ Composition

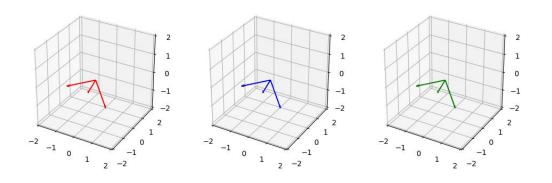
Matrices work well with that



□ But also interpolation

Unfortunately interpolation of rotation matrices do not result in a rotation matrix.

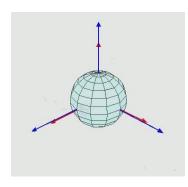
$$R^{-1} = R^{\top}$$
$$\det(R) = 1$$



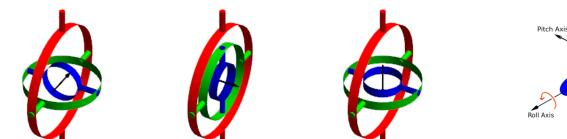
Can we represent SO(3) with only 3 parameters?

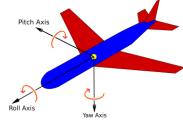
□ Euler angles: 3 consecutive unit rotations around different axes.

- □ Many conventions possible:
 - Z-Y-Z (3-1-3) representation



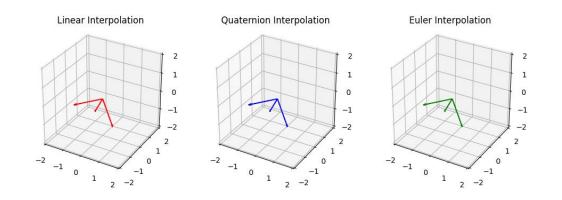
yaw-pitch-roll or Z-Y-X (3-2-1) --> used in flight!





Euler Angles and Gimbal Lock

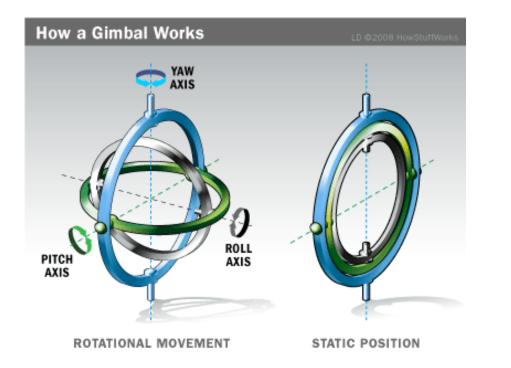
- Euler angles have a severe problem
 - If two axes align: blocks 1 DOF
 - 'singularity' of Euler angles



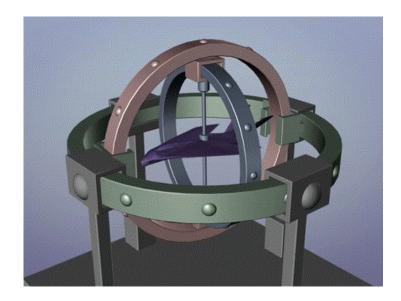
- Pros:
 - minimal representation
 - human readable

- Cons:
 - Gimbal lock
 - Infinite ways to represent rotation (mod. 2Π)
 - must convert to matrix to rotate vector
 - no easy composition
 - Interpolation does not give shortest path

Euler Angles and Gimbal Lock



Cons: the Gimbal Lock



https://compsci290-s2016.github.io/CoursePage/Materials/EulerAnglesViz/

See source for a good explanation on consequences / mitigation <u>https://www.youtube.com/watch?v</u> <u>=zc8b2Jo7mno</u>

Gimbal lock from matrix operation point of view

(from Wikipedia: https://en.m.wikipedia.org/wiki/Gimbal_lock#Loss_of_a_degree_of_freedom_with_Euler_angles)

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

An example worth examining happens when $\beta = \frac{\pi}{2}$. Knowing that $\cos \frac{\pi}{2} = 0$ and $\sin \frac{\pi}{2} = 1$, the above expression becomes equal to:

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Carrying out matrix multiplication:

$$R = \begin{bmatrix} 0 & 0 & 1\\ \sin \alpha & \cos \alpha & 0\\ -\cos \alpha & \sin \alpha & 0 \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\ \sin \alpha \cos \gamma + \cos \alpha \sin \gamma & -\sin \alpha \sin \gamma + \cos \alpha \cos \gamma & 0\\ -\cos \alpha \cos \gamma + \sin \alpha \sin \gamma & \cos \alpha \sin \gamma + \sin \alpha \cos \gamma & 0 \end{bmatrix}$$

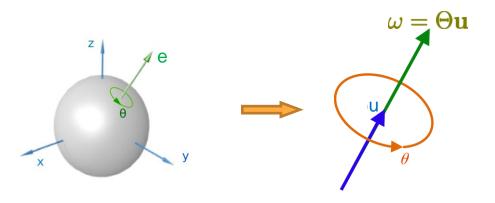
And finally using the trigonometry formulas:

$$R = egin{bmatrix} 0 & 0 & 1 \ \sin(lpha+\gamma) & \cos(lpha+\gamma) & 0 \ -\cos(lpha+\gamma) & \sin(lpha+\gamma) & 0 \end{bmatrix}$$

Changes in α and γ now affect the same rotation axis

Angle axis representation

 In 3D space, any rotation of a rigid body is equivalent to a single rotation by a given angle θ about a fixed axis u (ie, the Euler axis).



- Issue: again, not a map, ie hard to rotate a point directly
- However, this will be important later. Let's do some maths to show how this relate to angular velocities

Angle axis derivation

Angle axis derivation

How does velocity represent a rotation?

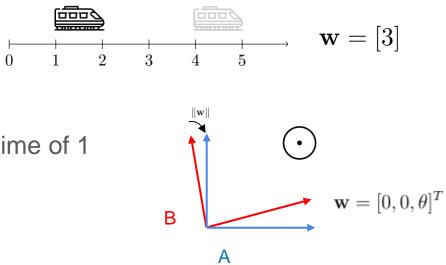
 $r \in SO(3)$ $\mathbf{w} \in so(3) \simeq \mathbb{R}^3$

 \Box so(3) is a Lie algebra (just name-dropping here, more later)

 \Box *r* obtained by integrating **w** for a duration of 1 (no unit)

Easy to see in linear space, though not so interesting

To align A and B we integrate a constant velocity during a time of 1



Angle axis derivation

 \Box w $\in \mathbb{R}^3$ is a minimal representation of $r \in SO(3)$

However it does not act as a map. Using velocity definition and derivative we can retrieve matrix representation through matrix exponentiation (Rodrigues formula) - see notes in drupal for full derivation:

$$\mathbf{R}(\mathbf{w}) = \mathbf{I} + sin\theta \mathbf{u}_{\times} + (1 - cos\theta)\mathbf{u}_{\times}^2$$

where

$$\mathbf{w} = \mathbf{\theta} \mathbf{u}, \mathbf{u} = [u_x, u_y, u_z]^T, ||\mathbf{u}||_2 = 1$$

$$\mathbf{u}_{ imes} = egin{bmatrix} 0 & -u_z & u_y \ u_z & 0 & -u_x \ -u_y & u_x & 0 \end{bmatrix}$$

Skew-symmetric matrix, encoding cross product by **u**

Angle axis summary

- □ w minimal representation or rotation
- □ Can't be used as operator, needs conversion to matrix form

$$\mathbf{R} = \exp(\mathbf{w}_{\times})$$

□ A log operator also exists

$$\mathbf{w}_{\times} = \log(\mathbf{R})$$

□ Can we find a 3D operator?

A minimal 3D tool for rotations?

A minimal 3D tool for rotations?

3D extension of complex numbers ?

□ Something like r = a + ib + jc

□ Such that composition would work:

 $r_1 * r_2 \Leftrightarrow$ apply transformation r_1 , then r_2 [1]

□ What rules for j such that composition works ?

It has been proven that no such representation exists in 3D!

[1] More formally and generally, looking for an unital asociative algebra A such that $(r_1 * r_2) * r_3 = r_1 * (r_2 * r_3) \forall r_k$ (associativity) and $1 * r = r = r * 1 \forall r$ (unital)

A minimal 3D tool for rotations?

3D extension of complex numbers ?

□ Something like r = a + ib + jc

□ Such that composition would work:

 $r_1 * r_2 \Leftrightarrow$ apply transformation r_1 , then r_2 [1]

□ What rules for j such that composition works ?

*Quaternions

Quaternions: extension of complex numbers from 2 dimensions, into 4 dimensions. Complex numbers: $i^2 = -1$, ie $a + b \cdot i$

Quaternions:

$$i^{2} = j^{2} = k^{2} = i \cdot j \cdot k = -1$$

ie $a + b \cdot i + c \cdot j + d \cdot k$

Recall the Axis-Angle representation:

1 k X 1 i 1 k i -1k -1j $^{-1}$ -kk k

Those are the conditions for the Algebra to be unital

and associative

3d rotation axis is defined by a vector (position in [m]);
rotational angle is defined by radians.

Quaternions represent all 4 dimensions coherently.

*Rotation: Quarternion

A quaternion is $r \in \mathbb{R}^4$

$$\mathbf{r} = egin{bmatrix} \sin(heta/2) u_1 \ \sin(heta/2) u_2 \ \sin(heta/2) u_3 \ \cos(heta/2) u_3 \ \cos(heta/2) \end{bmatrix}$$

A single rotation can be defined by two different quaternions (this will matter!)

Exercise: What is the equivalent quaternion?

A map can be obtained to apply a rotation r to p

 $\mathbf{r}_{\mathbf{p}'} = \mathbf{r} \mathbf{r}_{\mathbf{p}} \overline{\mathbf{r}}$

With $r_p = [p_x, p_y, p_z, 0]$ (pure quaternion)

with $\mathbf{u} = [u_1, u_2, u_3]$ unit rotation axis Unit length constraint (to represent rotations)

$$r^{\mathsf{T}}r = r_0^2 + r_1^2 + r_2^2 + r_3^2 = 1$$

*Quaternions: Pros and Cons

- Pros: mini rotation matrices
 - no singularity
 - almost minimal representation
 - easy to enforce constraints
 - easy composition
 - easy interpolation
 - Summary of Rotation representations
 - need rotation matrix for the rotational operation
 - Quarternions good for free rotations
 - Euler angles OK for small angular deviations...
 - but beware of singularities! I don't recommend it

- Cons
 - somewhat confusing