

Advanced Robotics

Forward Kinematics and Inverse Kinematics

Steve Tonneau School of Informatics University of Edinburgh

1

Reading for this week

❏ Siciliano, B., et al., Robotics: Modelling, Planning and Control.

Chapter 3.2 , 3.3, 3.5

❏ (If you are really motivated) Roy Featherstone, Rigid body dynamics algorithms Chapter 2.1, 2.2

An informal introduction

An informal introduction

How does an infinetesimal change in configuration affects end-effector linear velocity ?

$$
\delta p_{\rm eff} = \delta q_i [a_i \times (p_{\rm eff} - p_i)]
$$

$$
J_{\text{pos}}(q) = \begin{pmatrix} \underline{a}_1 & \times & \cdots & \times \\ \hline & \times & \times & \mathbb{Q}_{\text{eff}} & -\mathcal{P}_1 \\ & \times & \times & \mathbb{Q}_{\text{eff}} & -\mathcal{P}_1 \\ & \times & \mathbb{Q}_{\text{eff}} & \times \mathbb{Q}_{\text{eff}} & -\mathbb{Q}_1 \end{pmatrix}
$$

Our objectives for today

❏ Forward **kinematics** consists, given configuration and velocity in configuration space, in computing the velocity of a rigid body in the cartesian space:

$$
FK: \mathbf{q}, \mathbf{v}_q \longrightarrow \nu
$$

□ Inverse **kinematics** consists, given a desired velocity ν^* in the cartesian space (and the current configuration), in computing a velocity in the configuration space result in a velocity as close as possible to ν^* :

$$
IK:\nu^*,\mathbf{q}\longrightarrow\mathbf{v}_q
$$

But before, minimal info on spatial velocity

An element of the group.... Can be represented as ...

$$
\sum_{\text{translation rotation}} \mathbb{R}^3 \times SO(3) \sum \mathbb{R}^3 \times \mathbb{R}^{3 \times 3} \simeq \mathbb{R}^{4 \times 4} \xrightarrow{\text{Homogeneous matrix}}
$$
\n
$$
\mathbb{R}^3 \times \mathbb{H} \simeq \mathbb{R}^7
$$
\n
$$
\mathcal{V} \in se(3) = \begin{bmatrix} \mathbf{v} \\ \boldsymbol{\omega} \end{bmatrix} \simeq \mathbb{R}^6 \xrightarrow{\text{A spatial velocity ?}}
$$

 $m \in SE(3)$

displacement

❏ **v** linear velocity

 \square ω angular velocity

$$
\mathcal{V}\in se(3)=\left[\begin{matrix}\mathbf{v}\\\omega\end{matrix}\right]\simeq\mathbb{R}^6
$$

❏ **v** linear velocity

❏ Not completely intuitive

$$
\mathcal{V}\in se(3)=\begin{bmatrix} \mathbf{v} \\ \omega \end{bmatrix}\simeq \mathbb{R}^6
$$

 $\mathbf{v}_q = \mathbf{v}_p + \omega \times \overrightarrow{pq}$: velocity of the point of the rigid body currently coinciding with **q** seen from p

- ❏ **v** linear velocity
	- ❏ Not completely intuitive

$$
\mathcal{V}\in se(3)=\begin{bmatrix} \mathbf{v} \\ \omega \end{bmatrix}\simeq \mathbb{R}^6
$$

 $\mathbf{v}_q = \mathbf{v}_p + \omega \times \overrightarrow{pq}$: velocity of the point of the rigid body currently coinciding with **q** seen from p

Also true. Defined beyond a rigid body: vector field

❏ **v** linear velocity

 \square ω angular velocity

$$
\mathsf{A}\mathcal{V}\in se(3)=\begin{bmatrix}\mathsf{A}\mathsf{B}\mathsf{B}\mathsf{B}\end{bmatrix}\simeq\mathbb{R}^6
$$

❏ **v** linear velocity

 \square ω angular velocity

$$
\mathsf{P} \mathcal{V} \in se(3) = \begin{bmatrix} \mathsf{I}_\mathtt{A} \\ \mathsf{I}_\mathcal{U} \end{bmatrix} \simeq \mathbb{R}^6
$$

 \square $_{A}\gamma_{BC}$: spatial velocity of frame C wrt to frame B, expressed in frame A

$$
{}^A\mathcal{V}_{AC} = {}^A\mathcal{V}_{AB} + {}^A\mathcal{V}_{BC}
$$

❏ **v** linear velocity

 \square ω angular velocity

$$
\mathsf{P} \mathcal{V} \in se(3) = \begin{bmatrix} \mathsf{A}_{\mathsf{A}} \\ \mathsf{B} \end{bmatrix} \simeq \mathbb{R}^6
$$

 \square $_{A}\gamma_{BC}$: spatial velocity of frame C wrt to frame B, expressed in frame A

$$
{}^A \mathcal{V}_{AC} = {}^A \mathcal{V}_{AB} + {}^A \mathcal{V}_{BC}
$$

$$
{}^A\mathcal{V}_{AC} = {}^A\mathcal{V}_{AB} + {}^A\mathbf{X}_B{}^B\mathcal{V}_{BC}
$$

❏ **v** linear velocity

 \square ω angular velocity

$$
\mathsf{P} \mathcal{V} \in se(3) = \begin{bmatrix} \mathsf{R} \\ \mathsf{R} \end{bmatrix} \simeq \mathbb{R}^6
$$

 \square $_{A\gamma_{BC}}$: spatial velocity of frame C wrt to frame B, expressed in frame A

$$
{}^{A}\mathcal{V}_{AC} = {}^{A}\mathcal{V}_{AB} + {}^{A}\mathcal{V}_{BC}
$$

$$
{}^{A}\mathcal{V}_{AC} = {}^{A}\mathcal{V}_{AB} + {}^{A}\mathbf{X}_{B} {}^{B}\mathcal{V}_{BC}
$$

with ${}^{\mathsf{A}}\mathsf{X}_\mathsf{B}$ the « adjoint » or « action » matrix

$$
{}^{A}\mathbf{X}_{B} = \begin{bmatrix} {}^{A}\mathbf{R}_{B} & {}^{A}\overrightarrow{\mathbf{A}}\overrightarrow{\mathbf{B}}_{\times} {}^{A}\mathbf{R}_{B} \\ 0 & {}^{A}\mathbf{R}_{B} \end{bmatrix}
$$
 Let's just accept this for now

Forward kinematics

❏ The spatial velocity vector between the root frame {0} of a kinematic tree and the end effector frame {3} can depend both on the position and velocity in configuration space.

$$
{}^0\nu_{03}({\bf q},\ v_q)\quad{\rm and}\quad {}^3\nu_{03}({\bf q},\ v_q)
$$

❏ However for most classical joints it only depends on **v^q**

Example: revolute joint around x axis

$$
{}^{A}M_B(q) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q) & \sin(q) & 0 \\ 0 & -\sin(q) & \cos(q) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

 $v_q = \dot{q}$

$$
\frac{B}{A-q}
$$

Example: revolute joint around x axis

$$
{}^{A}M_{B}(q) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q) & \sin(q) & 0 \\ 0 & -\sin(q) & \cos(q) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{A}\!\nu_{AB}(\dot{q}) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \dot{q}
$$

$$
v_{q} = \dot{q}
$$

Example: prismatic z joint

$$
{}^{A}M_B(q) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{A}\!\nu_{AB}(\dot{q}) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \dot{q}
$$

$$
v_q = \dot{q}
$$

$$
A \qquad \qquad q \qquad \qquad B
$$

Example: spherical joint

$$
\underline{q} \in \mathbb{R}^4, \ \|\underline{q}\| = 1
$$

$$
{}^A \! M_B(q) = \begin{bmatrix} & & & 0 \\ & \mathcal{R}(\underline{q}) & & 0 \\ & & 0 & & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Example: spherical joint

$$
\underline{q}\in\mathbb{R}^4,\ \|\underline{q}\|=1
$$

$$
{}^{A}M_B(q) = \begin{bmatrix} & & & 0 \\ & \mathcal{R}(\underline{q}) & & 0 \\ & & 0 & 0 & 1 \end{bmatrix} \qquad {}^{A}\!\nu_{AB}(v_q) = \begin{bmatrix} 0_{3\times3} \\ I_{3\times3} \end{bmatrix} v_q
$$

In general, forward kinematics for one joint

J is a joint Jacobian (or at least behaves as such):

$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\nu_{01} + {}^{0}\nu_{12} + {}^{0}\nu_{23}
$$

$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\nu_{01} + {}^{0}\nu_{12} + {}^{0}\nu_{23}
$$

$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\mathbf{X}_1{}^{1}\nu_{01} + {}^{0}\mathbf{X}_2{}^{2}\nu_{12} + {}^{0}\mathbf{X}_3{}^{3}\nu_{23}
$$

$$
{}^{0}\nu_{03}(q,v_{q}) = {}^{0}\nu_{01} + {}^{0}\nu_{12} + {}^{0}\nu_{23}
$$

$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\mathbf{X}_1{}^{1}\nu_{01} + {}^{0}\mathbf{X}_2{}^{2}\nu_{12} + {}^{0}\mathbf{X}_3{}^{3}\nu_{23}
$$

$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\mathbf{X}_1{}^{1}J_1(q_1)v_{q_1} + {}^{0}\mathbf{X}_2{}^{2}J_2(q_2)v_{q_2} + {}^{0}\mathbf{X}_3{}^{3}J_3(q_3)v_{q_3}
$$

$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\nu_{01} + {}^{0}\nu_{12} + {}^{0}\nu_{23}
$$

\n
$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\mathbf{X}_1 {}^{1}\nu_{01} + {}^{0}\mathbf{X}_2 {}^{2}\nu_{12} + {}^{0}\mathbf{X}_3 {}^{3}\nu_{23}
$$

\n
$$
{}^{0}\nu_{03}(q, v_q) = {}^{0}\mathbf{X}_1 {}^{1}J_1(q_1)v_{q_1} + {}^{0}\mathbf{X}_2 {}^{2}J_2(q_2)v_{q_2} + {}^{0}\mathbf{X}_3 {}^{3}J_3(q_3)v_{q_3}
$$

\n
$$
{}^{0}\nu_{03}(q, v_q) = \begin{bmatrix} {}^{0}\mathbf{X}_1 {}^{1}J_1(q_1) & {}^{0}\mathbf{X}_2 {}^{2}J_2(q_2) & {}^{0}\mathbf{X}_3 {}^{3}J_3(q_3) \end{bmatrix} \begin{bmatrix} v_{q_1} \\ v_{q_2} \\ v_{q_3} \end{bmatrix}
$$

\n
$$
{}\nu(\mathbf{q}, v_{\mathbf{q}}) = \mathbf{J}(\mathbf{q})v_{\mathbf{q}}
$$

An informal introduction

How does an infinetesimal change in configuration affects end-effector linear velocity ?

$$
\delta p_{\rm eff} = \delta q_i [a_i \times (p_{\rm eff} - p_i)]
$$

$$
J_{\text{pos}}(q) = \begin{pmatrix} \overline{a}_1 & \overline{b}_1 & \overline{c}_1 \\ \overline{a}_2 & \overline{c}_1 & \overline{c}_1 \\ \overline{a}_1 & \overline{c}_1 & \overline{c}_
$$

❏ For any given q, J(q) is straightforward to compute

❏ If **J** is known, there is a linear mapping from a velocity in the configuration to a velocity in the cartesian space

❏ J is only valid **locally**

$$
\boxed{\nu(\mathbf{q},v_{\mathbf{q}})=\mathbf{J}(\mathbf{q})v_{\mathbf{q}}}
$$

Inverse kinematics is an inversion problem

 $\nu(\mathbf{q},v_{\mathbf{q}})=\mathbf{J}(\mathbf{q})v_{\mathbf{q}}$

Inverse kinematics is an inversion problem

$$
\nu(\mathbf{q},v_{\mathbf{q}})=\mathbf{J}(\mathbf{q})v_{\mathbf{q}}
$$

J is most likely not invertible, so what?

We can formulate IK as optimisation problem

- ❏ Also known in literature as differential inverse kinematics of closed loop inverse kinematics (click)
- **□** Given q and a target end-effector velocity ν^* find a joint velocity v_q that results in a end-effector velocity ν as close as possible to ν^*

$$
\min_{v_q} ||\nu(q, v_q) - \nu^*||^2
$$

How is this similar to inverse geometry ?

❏ IG:

 $\min_{q} \text{dist}({}^0M_e(q),{}^0M_*)$ $\min_{v_q} dist(^0M_e(q_0 \oplus v_q), ^0M_*)$

❏ IK:

$$
\min_{v_q} ||\nu(q, v_q) - \nu^*||^2
$$

$$
\min_{v_q} ||J(q)v_q - \nu^*||^2
$$

How is this similar to inverse geometry ?

❏ IG:

 $\min_{q} \text{dist}({}^0M_e(q),{}^0M_*)$ $\min_{v_q} dist(^0M_e(q_0 \oplus v_q), ^0M_*)$ Non-linear

❏ IK:

$$
\min_{v_q} ||\nu(q, v_q) - \nu^*||^2
$$

$$
\min_{v_q} ||J(q)v_q - \nu^*||^2
$$
 Linear

Solution to the unconstrained IK problem:

$$
v_q^* = J^{\dagger} \nu^*
$$

With J^{\dagger} Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits, velocity limits, etc:

IK with constraints

❏ Velocity bounds (element-wise)

$$
\min_{v_q} ||J(q)v_q - \nu^*||^2
$$

s.t.
$$
v_q^- \le v_q \le v_q^+
$$

 $\mathbf{q}^- \leq \mathbf{q} + \Delta t v_q \leq \mathbf{q}^+$ ❏ Joint bounds (using euler integration over a time step)

❏ Can also add other cost functions…

 \Box $v_q^* = J^{\dagger} \nu^*$ no longer optimal solution However, easy to solve using a Quadratic Program solver (e.g. quadprog)

IK vs IG

- ❏ Inverse kinematics (also called differential IK) is a linear, convex problem, very easy to solve
- ❏ Inverse geometry (also called IK) is a non-linear problem, very hard to solve
- ❏ When trying to solve IG iteratively, we can use the pseudo-inverse of the jacobian to locally update a configuration towards one that is closer to the goal. This is similar to performing one step of gradient descent (See example after)

A really simple articulated robot

❏ IG:

 $\phi^{-1}([x,y]^T) = \alpha \tan 2(y,x)$

❏ This problem has an analytical solution. **When solution exists, analytical IG defined if num (dof) <= dim(task)** (necessary condition)

❏ What if we did not have an analytical solution?

A toy problem

- **□** Current θ = pi/2 \Leftrightarrow p^{cur} = [0, 1]
- □ Target: $p^* = [-\sqrt{2}, \sqrt{2}]$

 \Box Idea: 'nudge' θ to see what happens

Finite differences?

A toy problem

□ Current θ = pi/2 \Leftrightarrow p^{cur} = [0, 1]

□ Target: $p^* = [-\sqrt{2}, \sqrt{2}]$

❏ The partial derivatives might give us information

$$
\delta p = \frac{\partial}{\partial_q} \phi(q) \delta q
$$

Local derivative indicate how an infinitesimal change in configuration affects **p**

A toy problem

□ Current θ = pi/2 \Leftrightarrow p^{cur} = [0, 1]

- □ Target: $p^* = [-\sqrt{2}, \sqrt{2}]$
- ❏ The partial derivatives might give us information

$$
\frac{\partial}{\partial_{\theta}}\phi(\theta) = \begin{bmatrix} \frac{\partial_{x}}{\partial_{\theta}} \\ \frac{\partial_{y}}{\partial_{\theta}} \end{bmatrix}
$$

$$
\frac{\partial_{x}}{\partial_{\theta}} = -\sin(\theta)
$$

$$
\frac{\partial_{y}}{\partial_{\theta}} = \cos(\theta)
$$

 $x = cos(\theta)$ $y = \sin(\theta)$

O

x

Toy problem

□ Current θ = pi/2 \Leftrightarrow p^{cur} = [0, 1]

□ Target: $p^* = [-\sqrt{2}, \sqrt{2}]$

❏ The partial derivatives might give us information

 $x = cos(\theta)$ $y = \sin(\theta)$

x

A gradient descent approach

 $\frac{\partial}{\partial a}\phi(\frac{\pi}{2}) = [-1,0]^T$

- ❏ Slope of the tangent at pi/2
- ❏ Thus, local linear approximation of Phi
	- \Box Locally, if $\theta \nearrow$, $x \searrow$ (not true if we increase θ too much)
	- Nothing to say about y?

- □ To reach $\left[-\sqrt{2},\sqrt{2}\right]$, we have an idea of a baby step to make:
	- Increase θ a little. If target is reached, we won, otherwise...
	- ❏ …start again: compute the new partial derivatives, slope etc

Gradient descent => find the minimum of a function

- ❏ Here distance between current position / target can be used as such function
- ❏ Trying to find the **global minima** will not always work…

