
Forward Kinematics and Inverse

Kinematics

Advanced Robotics

Steve Tonneau School of Informatics

University of Edinburgh

1

Reading for this week

❏ Siciliano, B., et al., Robotics: Modelling, Planning and Control.

Chapter 3.2 , 3.3, 3.5

❏ (If you are really motivated) Roy Featherstone, Rigid body dynamics algorithms

Chapter 2.1, 2.2

An informal introduction

An informal introductionAn informal introduction

4

How does an infinetesimal change in configuration affects

end-effector linear velocity ?

Our objectives for today

❏ Forward kinematics consists, given configuration and velocity in configuration

space, in computing the velocity of a rigid body in the cartesian space:

❏ Inverse kinematics consists, given a desired velocity in the cartesian space

(and the current configuration), in computing a velocity in the configuration

space result in a velocity as close as possible to :

5

But before, minimal info on spatial velocity

An element of the group…. Can be represented as …

Rotation matrix

quaternion

A velocity ?

rotation

displacement translation rotation

A spatial

velocity ?

Homogeneous

matrix

Spatial velocity vector

❏ v linear velocity

❏ angular velocity

u

Spatial velocity vector

❏ v linear velocity

❏ Not completely intuitive

: velocity of the point of the rigid body currently coinciding with q seen from p

qp

Spatial velocity vector

❏ v linear velocity

❏ Not completely intuitive

: velocity of the point of the rigid body currently coinciding with q seen from p

p q

p

q

Also true. Defined beyond

a rigid body: vector field

❏ v linear velocity

❏ angular velocity

Spatial velocity vector

A

A
A

A

A

❏ v linear velocity

❏ angular velocity

❏ : spatial velocity of frame C wrt to frame B, expressed in frame A

Spatial velocity vector

A
B C

A
A

A

A

❏ v linear velocity

❏ angular velocity

❏ : spatial velocity of frame C wrt to frame B, expressed in frame A

Spatial velocity vector

A
B C

A
A

A

A

❏ v linear velocity

❏ angular velocity

❏ : spatial velocity of frame C wrt to frame B, expressed in frame A

with AXB the « adjoint » or « action » matrix

Spatial velocity vector

A
B C

Let’s just accept this for now

A
A

A

A

Forward kinematics

❏ The spatial velocity vector between the root frame {0} of a kinematic tree and

the end effector frame {3} can depend both on the position and velocity in

configuration space.

❏ However for most classical joints it only depends on vq

0

3

Example: revolute joint around x axis

A

B

q

Example: revolute joint around x axis

A

B

q

Example: prismatic z joint

A Bq

Example: spherical joint

qA

B

It’s a choice

Example: spherical joint

qA

B

It’s a choice

In general, forward kinematics for one joint

J is a joint Jacobian (or at least behaves as such):

Forward kinematics for a chain of joints:

0

31

2

Forward kinematics for a chain of joints:

0

31

2

Forward kinematics for a chain of joints:

0

31

2

Forward kinematics for a chain of joints:

0

31

2

An informal introductionAn informal introduction

25

How does an infinetesimal change in configuration affects

end-effector linear velocity ?

Forward kinematics for a chain of joints:

❏ For any given q, J(q) is straightforward to compute

❏ If J is known, there is a linear mapping from a velocity in the configuration to a

velocity in the cartesian space

❏ J is only valid locally

0

31

2

Inverse kinematics is an inversion problem

Inverse kinematics is an inversion problem

J is most likely not invertible, so what?

We can formulate IK as optimisation problem

❏ Also known in literature as differential inverse kinematics of closed loop inverse

kinematics (click)

❏ Given q and a target end-effector velocity , find a joint velocity that results

in a end-effector velocity as close as possible to

How is this similar to inverse geometry ?

❏ IG:

❏ IK:

How is this similar to inverse geometry ?

❏ IG:

❏ IK:

Non-linear

Linear

Solution to the unconstrained IK problem:

With Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits,

velocity limits, etc:

IK with constraints

❏ Velocity bounds

(element-wise) s.t.

❏ Joint bounds

(using euler integration over a time step)

❏ Can also add other cost functions…

❏ no longer optimal solution

However, easy to solve using a Quadratic Program solver (e.g. quadprog)

IK vs IG

❏ Inverse kinematics (also called differential IK) is a linear, convex problem, very

easy to solve

❏ Inverse geometry (also called IK) is a non-linear problem, very hard to solve

❏ When trying to solve IG iteratively, we can use the pseudo-inverse of the

jacobian to locally update a configuration towards one that is closer to the goal.

This is similar to performing one step of gradient descent (See example after)

A really simple articulated robot

❏ 1 Dof, unit norm link (clock)

❏ FG:

❏ IG:

❏ This problem has an analytical solution. When solution exists, analytical IG

defined if num (dof) <= dim(task) (necessary condition)

❏ What if we did not have an analytical solution?

35

x

x’

O
x

y

x = cos()

y = sin ()

A toy problem

❏ Current = pi/2 pcur = [0, 1]

❏ Target: p* = [- ,]

❏ Idea: 'nudge' to see what happens

Finite differences?

36

x
O

x = cos()

y = sin ()

pcur

p*

A toy problem

❏ Current = pi/2 pcur = [0, 1]

❏ Target: p* = [- ,]

❏ The partial derivatives might give us information

Local derivative indicate how an infinitesimal change in configuration affects p

37

x

x = cos()

y = sin ()

A toy problem

❏ Current = pi/2 pcur = [0, 1]

❏ Target: p* = [- ,]

❏ The partial derivatives might give us information

38

x
O

x = cos()

y = sin ()

Toy problem

❏ Current = pi/2 pcur = [0, 1]

❏ Target: p* = [- ,]

❏ The partial derivatives might give us information

39

x
O

x = cos()

y = sin ()

A gradient descent approach

❏ Slope of the tangent at pi/2

❏ Thus, local linear approximation of Phi

❏ Locally, if , x (not true if we increase too much)

❏ Nothing to say about y?

❏ To reach [- ,], we have an idea of a baby step to make:

❏ Increase a little. If target is reached, we won, otherwise…

❏ …start again: compute the new partial derivatives, slope etc
40

Gradient descent => find the minimum of a function

❏ Here distance between current position / target can be used as such function

❏ Trying to find the global minima will not always work…

41Exercise: compute partial derivatives for an arm with 2 unit length axes (2 dofs, ie 2 angle values)

	Slide 1
	Slide 2: Reading for this week
	Slide 3: An informal introduction
	Slide 4: An informal introduction
	Slide 5: Our objectives for today
	Slide 6: But before, minimal info on spatial velocity
	Slide 7: Spatial velocity vector
	Slide 8: Spatial velocity vector
	Slide 9: Spatial velocity vector
	Slide 10: Spatial velocity vector
	Slide 11: Spatial velocity vector
	Slide 12: Spatial velocity vector
	Slide 13: Spatial velocity vector
	Slide 14: Forward kinematics
	Slide 15: Example: revolute joint around x axis
	Slide 16: Example: revolute joint around x axis
	Slide 17: Example: prismatic z joint
	Slide 18: Example: spherical joint
	Slide 19: Example: spherical joint
	Slide 20: In general, forward kinematics for one joint
	Slide 21: Forward kinematics for a chain of joints:
	Slide 22: Forward kinematics for a chain of joints:
	Slide 23: Forward kinematics for a chain of joints:
	Slide 24: Forward kinematics for a chain of joints:
	Slide 25: An informal introduction
	Slide 26: Forward kinematics for a chain of joints:
	Slide 27: Inverse kinematics is an inversion problem
	Slide 28: Inverse kinematics is an inversion problem
	Slide 29: We can formulate IK as optimisation problem
	Slide 30: How is this similar to inverse geometry ?
	Slide 31: How is this similar to inverse geometry ?
	Slide 32: Solution to the unconstrained IK problem:
	Slide 33: IK with constraints
	Slide 34: IK vs IG
	Slide 35: A really simple articulated robot
	Slide 36: A toy problem
	Slide 37: A toy problem
	Slide 38: A toy problem
	Slide 39: Toy problem
	Slide 40: A gradient descent approach
	Slide 41: Gradient descent => find the minimum of a function

