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Reading for this week

❏ Siciliano, B., et al., Robotics: Modelling, Planning and Control. 

Chapter 3.2 , 3.3, 3.5

❏ (If you are really motivated) Roy Featherstone, Rigid body dynamics algorithms

Chapter 2.1, 2.2
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How does an infinetesimal change in configuration affects 

end-effector linear velocity ?



Our objectives for today

❏ Forward kinematics consists, given configuration and velocity in configuration 

space, in computing the velocity of a rigid body in the cartesian space:

❏ Inverse kinematics consists, given a desired velocity     in the cartesian space 

(and the current configuration), in computing a velocity in the configuration 

space result in a velocity as close as possible to     :
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But before, minimal info on spatial velocity

An element of the group….                                Can be represented as …

Rotation matrix

quaternion

A velocity ?

rotation

displacement translation rotation

A spatial 

velocity ?

Homogeneous

matrix



Spatial velocity vector

❏ v linear velocity

❏ angular velocity

u



Spatial velocity vector

❏ v linear velocity

❏ Not completely intuitive

:  velocity of the point of the rigid body currently coinciding with q seen from p

qp



Spatial velocity vector

❏ v linear velocity

❏ Not completely intuitive

:  velocity of the point of the rigid body currently coinciding with q seen from p

p q

p

q

Also true. Defined beyond

a rigid body: vector field



❏ v linear velocity

❏ angular velocity

Spatial velocity vector

A

A
A

A

A



❏ v linear velocity

❏ angular velocity

❏ : spatial velocity of frame C wrt to frame B, expressed in frame A

Spatial velocity vector

A
B C

A
A

A

A



❏ v linear velocity

❏ angular velocity

❏ : spatial velocity of frame C wrt to frame B, expressed in frame A

Spatial velocity vector

A
B C

A
A

A

A



❏ v linear velocity

❏ angular velocity

❏ : spatial velocity of frame C wrt to frame B, expressed in frame A

with AXB the « adjoint » or « action » matrix

Spatial velocity vector

A
B C

Let’s just accept this for now

A
A

A

A



Forward kinematics

❏ The spatial velocity vector between the root frame {0} of a kinematic tree and 

the end effector frame {3} can depend both on the position and velocity in 

configuration space.

❏ However for most classical joints it only depends on vq

0
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Example: revolute joint around x axis

A

B

q



Example: revolute joint around x axis

A

B

q



Example: prismatic z joint

A Bq



Example: spherical joint

qA

B

It’s a choice



Example: spherical joint

qA

B

It’s a choice



In general, forward kinematics for one joint

J is a joint Jacobian (or at least behaves as such):



Forward kinematics for a chain of joints:

0
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Forward kinematics for a chain of joints:
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Forward kinematics for a chain of joints:
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Forward kinematics for a chain of joints:
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How does an infinetesimal change in configuration affects 

end-effector linear velocity ?



Forward kinematics for a chain of joints:

❏ For any given q, J(q) is straightforward to compute

❏ If J is known, there is a linear mapping from a velocity in the configuration to a 

velocity in the cartesian space

❏ J is only valid locally

0
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Inverse kinematics is an inversion problem



Inverse kinematics is an inversion problem

J is most likely not invertible, so what? 



We can formulate IK as optimisation problem

❏ Also known in literature as differential inverse kinematics of closed loop inverse 

kinematics (click)

❏ Given q and a target end-effector velocity , find a joint velocity that results

in a end-effector velocity as close as possible to 



How is this similar to inverse geometry ?

❏ IG:

❏ IK:



How is this similar to inverse geometry ?

❏ IG:

❏ IK:

Non-linear

Linear



Solution to the unconstrained IK problem:

With Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits, 

velocity limits, etc:



IK with constraints

❏ Velocity bounds

(element-wise)                  s.t.

❏ Joint bounds 

(using euler integration over a time step)

❏ Can also add other cost functions…

❏ no longer optimal solution

However, easy to solve using a Quadratic Program solver (e.g. quadprog)



IK vs IG

❏ Inverse kinematics (also called differential IK) is a linear, convex problem, very

easy to solve

❏ Inverse geometry (also called IK) is a non-linear problem, very hard to solve

❏ When trying to solve IG iteratively, we can use the pseudo-inverse of the 

jacobian to locally update a configuration towards one that is closer to the goal.

This is similar to performing one step of gradient descent (See example after)



A really simple articulated robot

❏ 1 Dof, unit norm link (clock)

❏ FG:

❏ IG:

❏ This problem has an analytical solution. When solution exists, analytical IG 

defined if num (dof) <= dim(task) (necessary condition)

❏ What if we did not have an analytical solution? 
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A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

❏ Idea: 'nudge' to see what happens

Finite differences?
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A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

❏ The partial derivatives might give us information

Local derivative indicate how an infinitesimal change in configuration affects p
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A toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

❏ The partial derivatives might give us information
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Toy problem

❏ Current = pi/2  pcur = [0, 1]

❏ Target:  p* = [- ,    ]

❏ The partial derivatives might give us information
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A gradient descent approach

❏ Slope of the tangent at pi/2

❏ Thus, local linear approximation of Phi

❏ Locally, if         , x      (not true if we increase too much)

❏ Nothing to say about y?

❏ To reach [- ,   ], we have an idea of a baby step to make:

❏ Increase a little. If target is reached, we won, otherwise…

❏ …start again: compute the new partial derivatives, slope etc
40



Gradient descent => find the minimum of a function

❏ Here distance between current position / target can be used as such function

❏ Trying to find the global minima will not always work…

41Exercise: compute partial derivatives for an arm with 2 unit length axes (2 dofs, ie 2 angle values)
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