. THE UNIVERSITY of EDINBURGH

- informatics

Advanced Robotics

Forward Kinematics and Inverse
Kinematics

Steve Tonneau School of Informatics
University of Edinburgh

Reading for this week

1 Siciliano, B., et al., Robotics: Modelling, Planning and Control.

Chapter 3.2, 3.3, 3.5

1 (If you are really motivated) Roy Featherstone, Rigid body dynamics algorithms

Chapter 2.1, 2.2

An Informal introduction

An Informal introduction

How does an infinetesimal change in configuration affects

end-effector linear velocity ?

i-th joint

OPeff = 0Gi|a; X (Peff — Pi)]

Jpos(Q') =

[(1d—) x 1)

\

(7 — w2d) x %)

(d — #2d) x ")

/

c R3Xn

Our objectives for today

1 Forward kinematics consists, given configuration and velocity in configuration
space, in computing the velocity of a rigid body in the cartesian space:

FK:q,vg — v

1 Inverse kinematics consists, given a desired velocity p* in the cartesian space
(and the current configuration), in computing a velocity in the configuration
space result in a velocity as close as possible to v™*:

IK :v*,q — vy

But before, minimal info on spatial velocity

An element of the group.... Can be represented as ...
r e 30(3) 2 R € R3X3 Rotation matrix
rotation qe€ H ~ R4, ||q|| = 1 quaternion

w € 80(3) ~ RS A velocity ?

m € SE(3) ~ R3xSO(3) ™ R3 x R3*3 ~ R*X4 Homogeneous

matrix

3 7

displacement translation rotation R X H = IR_
V 6 A spatial

Ve 36(3) — [] ~ R velocity ?

W

Spatial velocity vector

v linear velocity .-

Y € se(3) = :;

~ RO

1 wangular velocity

Ou

€
|

Spatial velocity vector

v linear velocity .-
\'%

W

1 Not completely intuitive Y € 86(3) = ~ Rﬁ

Vg =Vp+ wxﬁ: velocity of the point of the rigid body currently coinciding with g seen from p

D

Spatial velocity vector

v linear velocity .-
\'%

- Not completely intuitive Y € 36(3) — W

~ RO

Vg =Vp+ wxﬁ: velocity of the point of the rigid body currently coinciding with g seen from p

& <D

Also true. Defined beyond
a rigid body: vector field

Spatial velocity vector

v linear velocity .-

Vesed)=|,"| ~R®

1 wangular velocity

<l

Spatial velocity vector

v linear velocity .-

Ve se(3) = ,Z*

~ RO

1 wangular velocity

- Ay spatial velocity of frame C wrt to frame B, expressed in frame A

C

AWac =" Vap +* Vae

Spatial velocity vector

v linear velocity .-

Ve se(3) = Z*

~ RO

1 wangular velocity

- Ay spatial velocity of frame C wrt to frame B, expressed in frame A

C

AWac =" Vap +* Vae

Wac =2 Vap +2Xp%Vae

Spatial velocity vector

v linear velocity .-

Vesed)=|,"| ~R®

1 wangular velocity

- Ay spatial velocity of frame C wrt to frame B, expressed in frame A

Wi = Vap +2 Vae
Wac =2 Vap +2Xp%Vae

\
with AX; the « adjoint » or « action » matrix S M

0 AR5

AXB —
Let’s just accept this for now

Forward kinematics

1 The spatial velocity vector between the root frame {0} of a kinematic tree and
the end effector frame {3} can depend both on the position and velocity Iin
configuration space.

‘vos(a, v,) and Svoz(q, vg)

1 However for most classical joints it only depends on v,

Example: revolute joint around X axis

0 0

1 0

A _ |10 cos(gq) sin(q) O
Mp(q) = 0 —sin(q) cos(gq) O
0 0 0 1

Example: revolute joint around X axis

0 0

cos(g) sin(g)

—sin(g) cos(q)
0 0

Example: prismatic z joint

OO -

o O = O

o= O O

R O O

“vaB(g) =

Example: spherical joint

geR?, |g =1

“Mp(q) =

b

I

~—~
-0 O O

B o

It's a choice
Aq

Example: spherical joint

geR?, |g =1

“Mp(q) =

b

)

~—

-0 O O

A
o
e
ﬂQ".‘
~—
|

-

oY

X

oy

I
QCE

B o

It's a choice
Aq

In general, forward kinematics for one joint

aB(g,v,) = “J(q)vq

a,/f of dg
ot dq ot

J is a joint Jacobian (or at least behaves as such):

Forward kinematics for a chain of joints:

0 0 0 0
V03(Q7Uq) = o1 + V12 + V23

Forward kinematics for a chain of joints:

0 0 0 0
V03(Q7Uq) = o1 + V12 + V23

Ov 1 Ov 2 O~ 3
v03(q,v4) = " X1 191 + "X v10 + " X3° V03

Forward kinematics for a chain of joints:

0 0 0 0
V03(Q7Uq) = o1 + V12 + V23

Ov 1 Ov 2 O~ 3
v03(q,v4) = " X1 191 + "X v10 + " X3° V03

"v03(q, vg) = "X J1(q1)vg, + " Xo? T2 (q2)vg, + " X3”J3(q3)vg

Forward kinematics for a chain of joints:

An Informal introduction

How does an infinetesimal change in configuration affects

end-effector linear velocity ?

i-th joint

OPeff = 0Gi|a; X (Peff — Pi)]

Jpos(Q') =

[(1d—) x 1)

\

(7 — w2d) x %)

(d — #2d) x ")

/

c R3Xn

25

Forward kinematics for a chain of joints:

1 For any given g, J(q) is straightforward to compute

- If J is known, there is a linear mapping from a velocity in the configuration to a
velocity in the cartesian space

1 Jis only valid locally @

v(Q,vq) = J(q)vq

Inverse kinematics is an inversion problem

v(q, 'UCI) = J(q)'vq

)

Uq = J(Q)_ly(qJ ‘Uq)

Inverse kinematics is an inversion problem

v(q,vq) = J(q)vg

)

Uq = J(Q)_ly(qJ ‘Uq)

J is most likely not invertible, so what?

We can formulate IK as optimisation problem

1 Also known in literature as differential inverse kinematics of closed loop inverse
kinematics (click)

1 Given g and a target end-effector velocity v~ find a joint velocity U4 that results
in a end-effector velocity v as close as possible to v*

min,, [|v(q, vg) — V7 |I*

How Is this similar to inverse geometry ?

min, dist(°M.(q),"M,)

min,, dist(°M.(qo ® v,)," M.)

d IK:
min,_ |[v(q,vg) — v*|]?

miny, |7 (q)vg — v

How Is this similar to inverse geometry ?

min, dist(°M.(q),"M,)

min,, dist(°M.(qo ® v,)," M.)

\ -
Non-linear

J IK:
min,,_ ||v(q,vq) — v*||7

/ Linear

miny, |7 (q)vg — v

Solution to the unconstrained IK problem:

With JT Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits,
velocity limits, etc:

IK with constraints

min,, ||J(q)v, — v*||?
1 Velocity bounds vql1/(@)0g |

(element-wise) st Uy <vg < vl

3 Joint bounds a- <q+Aty, <q"
(using euler integration over a time step)

1 Can also add other cost functions...

0 v,* = J'w* no longer optimal solution
However, easy to solve using a Quadratic Program solver (e.g. quadprog)

IK vs |G

 Inverse kinematics (also called differential IK) is a linear, convex problem, very
easy to solve

1 Inverse geometry (also called IK) is a non-linear problem, very hard to solve
1 When trying to solve IG iteratively, we can use the pseudo-inverse of the

jacobian to locally update a configuration towards one that is closer to the goal.
This is similar to performing one step of gradient descent (See example after)

A really simple articulated robot

1 1 Dof, unit norm link (clock) t x =cos(f)
d FG:

(q) = ¢(8) = [cos(0), sin(0)]" ,

o ([z,y]") = atan2(y,) 0

1 This problem has an analytical solution. When solution exists, analytical |G
defined if num (dof) <= dim(task) (necessary condition)

1 What if we did not have an analytical solution?
35

A toy problem

1 Current = pi/2 & peur =0, 1]

4 Target: p*=[-v2 2]

1 Idea: 'nudge' g to see what happens

Finite differences?

A pCUF

X = cos(d)
y =sin ()

A toy problem

1 Current = pi/2 & peur =0, 1]

4 Target: p*=[-v2 2]

1 The partial derivatives might give us information

op = §¢(Q)5q
q

Local derivative indicate how an infinitesimal change in configuration affects p

37

A toy problem

1 Current = pi/2 & peur =0, 1]
4 Target: p*=[-v2 2]

1 The partial derivatives might give us information

0 5 °
—H(0) = | 2

o |§

Or .

% sin ()

Oy = cos(6)

4

X = cos(d)
y =sin ()

38

Toy problem

1 Current = pi/2 & peur =0, 1]

4

X = cos(d)
y =sin (6)

4 Target: p*=[-v2 2]
1 The partial derivatives might give us information

0 = °

—H(0) = | 2

oo |§

%) o, m T

=T - _ —o(=)=|—1,0

2, sin () “ Py (2) —1,0]

Oy = cos(6)

39

A gradient descent approach

o, m T
5 0(5) = [-1,0

1 Slope of the tangent at pi/2

1 Thus, local linear approximation of Phi
3 Locally, if @ 7, x "« (not true if we increase @too much)

1 Nothing to say about y?

1 To reach [- \/,v2], we have an idea of a baby step to make:
a Increase @ a little. If target is reached, we won, otherwise...

1 ...start again: compute the new partial derivatives, slope etc

40

Gradient descent => find the minimum of a function

1 Here distance between current position / target can be used as such function

 Trying to find the global minima will not always work...

Exercise: compute partial derivatives for an arm with 2 unit length axes (2 dofs, ie 2 angle values) 41

	Slide 1
	Slide 2: Reading for this week
	Slide 3: An informal introduction
	Slide 4: An informal introduction
	Slide 5: Our objectives for today
	Slide 6: But before, minimal info on spatial velocity
	Slide 7: Spatial velocity vector
	Slide 8: Spatial velocity vector
	Slide 9: Spatial velocity vector
	Slide 10: Spatial velocity vector
	Slide 11: Spatial velocity vector
	Slide 12: Spatial velocity vector
	Slide 13: Spatial velocity vector
	Slide 14: Forward kinematics
	Slide 15: Example: revolute joint around x axis
	Slide 16: Example: revolute joint around x axis
	Slide 17: Example: prismatic z joint
	Slide 18: Example: spherical joint
	Slide 19: Example: spherical joint
	Slide 20: In general, forward kinematics for one joint
	Slide 21: Forward kinematics for a chain of joints:
	Slide 22: Forward kinematics for a chain of joints:
	Slide 23: Forward kinematics for a chain of joints:
	Slide 24: Forward kinematics for a chain of joints:
	Slide 25: An informal introduction
	Slide 26: Forward kinematics for a chain of joints:
	Slide 27: Inverse kinematics is an inversion problem
	Slide 28: Inverse kinematics is an inversion problem
	Slide 29: We can formulate IK as optimisation problem
	Slide 30: How is this similar to inverse geometry ?
	Slide 31: How is this similar to inverse geometry ?
	Slide 32: Solution to the unconstrained IK problem:
	Slide 33: IK with constraints
	Slide 34: IK vs IG
	Slide 35: A really simple articulated robot
	Slide 36: A toy problem
	Slide 37: A toy problem
	Slide 38: A toy problem
	Slide 39: Toy problem
	Slide 40: A gradient descent approach
	Slide 41: Gradient descent => find the minimum of a function

