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Dynamics vs. Kinematics

1 So far we assumed that we can generate any v, on our robot
(eg when looking at forward kinematics)

1 However this is rarely the case, eqg:
1 Aflying airplane: You cannot command it to hold still in the air or move straight up
1 A car: You cannot command it to move sideways
1 Your arm: You can’t command it to throw a ball with arbitrary velocity (force limits)

1 Atorque-controlled robot: You cannot command it to instantaneously change velocity (infinite
acceleration/torque)



Actuation of a robot

An actuator needs a model:
1 x is the state of the actuator / robot
1 u is the control input

1 The state at any time depends on both the previous state and the control input:

Xttr1 = f(Xt, llt) , with f assumed to be smooth

1 Eg: when we looked at forward / inverse kinematics

X =q,u=Vq

f(q7VQ) :q@vq



Three classic models for a robot actuator

1 Velocity source x=q,u=vq
Good approximation for hydraulic motors; good for electric actuators only in certain condition (eg
industrial manipulators, not legged robots)
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Three classic models for a robot actuator

1 Velocity source x=q,u=vq
Good approximation for hydraulic motors; good for electric actuators only in certain condition (eg
industrial manipulators, not legged robots)

J Acceleration / force source x = (q,vq),u = vq
Good approximation for electric motors if large contact forces are not involved.

J Torgue source x=(q,vq),u=r
Good approximation for electric motors. Assumption is that torque is proportional to current.
However, gear reductions introduce unmodeled terms that we need to account for.



1 We discuss the following three topics today:
1 1D point mass
1 A‘general’ dynamic robot ( [1 Dynamics Il)

1 Joint space control

- For now we assume that the robot is fully actuated and that vq = q

(ie velocity and configuration space have the same dimension)

1 We also assume motors are equipped with accurate position sensors (i.e. we
know q accurately)



Exercise on the Board

Discuss problem formulation and modelling assumptions associated with moving
an object, along a computed trajectory, and controlling against deviations

- How to phrase the questions?

- How does analysis support design?



Simplest possible case: 1D point mass

1 no gravity, no friction

— M

A

e State x(t) = (q(t),q(t)) is described by:
— position ¢(t) € R
—velocity ¢(t) € R

e The controls u(t) is the force we apply on the mass point

e The system dynamics is:

G(t) = u(t)/m



1 Given current g,, what control u, to get closer to desired position g*?
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1D Mass: Proportional Control

1 Given current g,, what control u, to get closer to desired position g*?

1 Consider an applied force that is an input proportional to the “error”:
(difference here is that u is a force and not a velocity)

u= K, (q" —q)

—1

|
|
q*

1 You can picture a spring attached to g* that pulls the mass towards it. What
happens in the absence of friction ?
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1D Mass: Closed-loop Dynamics

m{=u=1IK, (¢ —q)
a=q(t) is a function of time, this is a second order differential eq.

e Solution: assume ¢(t) = a + be“!
(an “non-imaginary” alternative would be ¢(t) = a + b e~ cos(wt))

mbw? e =K, ¢ —K,a— K, be"
(mbw? + K, b) e =K, (¢ —a)
= (mbw* +K,b)=0 A (¢* —a)=0

= w=1iy/K,/m

Q(t) _ q* _|_b€‘i\/Kp/m t

This is an oscillation around ¢* with amplitude b = ¢(0) — ¢* and

frequency /K, /m/! 12



1D Mass: Closed-loop Dynamics

What's the effect?
mg=u=K, (Q*_Q)
Q(t) _ q* _|_b€?l\/Kp/mt

This is an oscillation around ¢* with amplitude b = ¢(0) — ¢* and

frequency /K, /m!

1
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1D Mass: Damping forces

Can we shape the dynamics further?

‘Pull less, when we're heading the right direction already.”
‘Damp the system.”

Water Olive Oil Honey

Medium viscosity High viscosity
Medium strength trong
.................
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1D Mass: Damping forces

Olive Oil Honey

Can we shape the dynamics further?

“Pull less, when we're heading the right direction already:”
‘Damp the system:”

u=Kylq" —q)+ Kalq" —q)

¢* is a desired goal velocity
For simplicity we set ¢* = 0 in the following.

—m — | >
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1D Mass: Damping forces

What is the effect? mi=u= K,(¢" — q) + K4(0 — ¢)

e Solution: again assume ¢(t) = a + be*"

mbw? e =K, ¢ —K,a—K,be" —Kybwe
(mbw?* +Kgbw+ K, b) e =K, (¢* —a)
= mw’ +Kgw+K,) =0 A (¢"—a)=0

— K, =+ \/Kg —4mK,
2m

= W=

q(t) =q" +be?

The term — 24 inwisreal « exponential decay (damping)

2m,
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1D Mass: Damping forces

What's the effect?

—Kqt\/K3—4mK,

2m

q(t) =q*+be’ ", w=

e Effect of the second term /K3 — 4mK,/2m in w:

K7 < 4mK, = w hasimaginary part

oscillating with frequency \/K,,/m — K3 /4m?
q(t) = q* + be~Ka/2m t giv/Kp/m—Ki/m? i

K2 >4mK, = wreal
strongly damped

K3 =4mK, = second term zero
only exponential decay
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1D Mass: Concept of damping ratio

Alternative Parameterisation
Instead of specifying the coefficients Kp and Kd

e “wave length” A = - = Klp/m , K, =m/)\
e damping ratio ¢ = EK =l K, =2mE/A

¢ > 1: over-damped
¢ = 1: critically dampled
¢ < 1: oscillatory-damped

Q(t) _ q* 4 be—&/)\ t eiwo\/l—{f? t

18



1kg, c=0MN=s.-m

10M-m, m

E=

Spring-Mass-Dashpot:

Hea e I B

14

t [=]

VTV

12

10

4==F == =-=7
™ o
L2 i~

[=-w] p-hp

o
_

R RN B R N
] L]

19




20

#
e
N el
=
-
Ui
=
(]
o
1l
U
o
m
Ty
—
1l
=
= m m
= il 1
[ ] - -
—
1l
Ty
| ™ ]
L 1] — vl
=
: )
(ol
£
i
o = =
n
I}
m
T
L L o L o0
c H..U
el
L
[
i)
h v
N -
B U
F === - =2 ==t =-=-F=-=-i-=-==-=-4L0O T R B B
o oW ' + | + I (m] | +
o — o] ] + I o +
[W] <1 | I
[=-w] p-hp




21

)

-y
=
.,
1]
=
Lo
+
i
o
L]
Il
]
.
m
.y
—
1l
=
"l n
g o o
=z - .
]
—
1l
] i)
= [ — —
_
[u]
&
[1] o ]
m — —
7
n
i
= un} F OO
]
o
C
-
ol
] L) F 0
+ F 4+
F
--- e G I ST EAE I B g
=+ ] ] R ] ]
ol (] - - o —
|

[=-w] p-hp




22

)

o
=
-
ui
=
i
—
1
u
o
o
iy
—
1
=
o
= m m
-+ W =+ W
W —_ Ealks
m - -
1
-
- ™ |
Py — —
o
[t
L
i
] o]
_m_ — " —
]
]
il
=
L m L o
C
-
'
[
i
] - 0
-+
L
-=- - - - - -t - --i-=-a=-=-}0O T R R R B
+ o I ] o] I +
g S - . o . &
w1 (h o i

[s-<m] ip-fip




Adding another term to this Spring-damper system

u=Ky(q¢" —q) +Kq(¢" —q)|+ K; f_o(q*(S) —q(s)) ds

e PID control
— Proportional Control (“Position Control”)

[ o< K" —q)

— Derivative Control (“Damping”)
P Kald" i) 0" —0 - damping

— Integral Control (“Steady State Error”)
fox K; f;zo(q*(S) —q(s)) ds
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1D Mass: Summary

1 Dynamics of a 1D mass-spring-damper system, a spring and a damper added
to a point mass, i.e. spring and damping forces (aka PD controller)
1 Resultant force acting on the system in a linear ‘control law’

T (q,q) —u=K,(q" —q)+ Ki(§" —q)
(linear in the dynamic system state © = (q. ¢))

1 With such simple linear rules, we can modulate the dynamic response of the
system by tuning the ‘strength’ of spring and damper (ie, PD gains in the PD
‘control law’)

1 *trade-off: there is no optimality criterion supporting such rules and the resulting
motions (hence, we may be able to do better)
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