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Outline

❏ We discuss the following three topics today:

❏ 1D point mass 

❏ A ‘general’ dynamic robot ( => Dynamics II)

❏ Joint space control

❏ For now we assume that the robot is fully actuated and that

(ie velocity and configuration space have the same dimension)

❏ We also assume motors are equipped with accurate position sensors (ie we 

know q accurately)



Forward and inverse dynamics

❏ As for geometry and kinematics, we are interested in two formulations of the 

dynamics of a system

❏ Forward dynamics: Given q, vq and    , compute joint accelerations

Useful for simulation

❏ Inverse dynamics: Given q, vq and      , compute torque commands

Useful for control
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Two approaches to dynamics

❏ Lagrangian dynamics

❏ Intuitive variational formulation (principles you may already be familiar with)

❏ Equations get messy quite quickly

❏ Newton-Euler dynamics

❏ Not so intuitive, we’ll focus mainly on the ideas (detailed derivations in all standard texts)

❏ Newton-Euler is practically used in robotics because efficient recursive algorithms can be 

derived from the formulation
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Lagrangian dynamics

❏ In classic mechanics, as you would have seen in secondary school, we have 

the core concept of mechanical energy

❏ Example: free fall of a point mass

❏ Kinetic Energy T

❏ Potential Energy U (gravitational)

❏ If only conservative forces are applied, total energy E = T + U is constant
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Lagrangian dynamics –intuitions

❏ Let’s write

❏ We can verify that

❏ Which brings us back to the very familiar Newton’s law F = ma.

❏ L is called the Lagrangian, and concisely captures the physics
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Lagrangian mechanics

❏ In the general case, it can be proven that this equation equates to the torques

❏ We won’t prove this (all variational calculus and mechanics books will cover 

this - if you were interested), just show it on another example
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Example: Equation of motion of a 1-DOF robot arm 

(pendulum)
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Example: Equation of motion of a 1-DOF robot arm 

(pendulum)
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20

center of 
mass

gravity

q

mass of pendulum:

moment of inertia
(about pivot point):

𝐼𝑝

Ip𝐪
··
= ∑

𝑖
𝜏𝑖

Newton’s second law :

𝜏𝑔 = −𝑟𝑚𝑔sin(q)

𝜏𝑚

𝜏𝑚

Motor torque

Gravity torque𝑟sin(q)



Lagrangian computation
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Why use the Lagrangian?

❏ Newton’s law equations consider each rigid body individually. The problem is that we will have 

to also consider constraint forces (e.g. double pendulum equations below – source: wolfram)

❏ Lagrangian formulations nicely incorporates all of these considerations

❏ Things get rapidly complicated when we write out complete equations of motion. The 

differential equations for the double pendulum system are respectively: 
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Indeed the behaviour is … chaotic
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Canonical form for articulated rigid bodies 

❏ We can regroup terms as follows
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Inertia Matrix

Coriolis Matrix

Centrifugal Matrix

Gravity Vector

External Forces

M,B,C,G are only configuration dependent



What are Coriolis forces?
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Other representations in the literature
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C is a vector with Coriolis plus centrifugal terms

C is a matrix with Coriolis plus centrifugal terms



More about the inertia matrix M(q):

❏ M defines the Kinetic energy of our robot:

❏ Because , M is ?
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More about the inertia matrix M(q):

❏ M defines the Kinetic energy of our robot:

❏ Because , M is positive-definite

❏ As such it is invertible:
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This gives us the equations for forward and inverse dynamics
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Inverse Dynamics equation = control

Forward Dynamics equation = simulation



❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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Consider first link only (ignore rest of robot)

Compute linear acceleration of Joint 1 at its COM

Compute angular acceleration of Joint 1

pC1 denotes the 
coordinates of the 
first link C1, more 
on this next week



❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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Compute accelerations of next link in chain



❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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Until all link accelerations are known



❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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Then, proceed
backwards to compute
Forces and moments



❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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Then, proceed
backwards to compute
Forces and moments

Consider last link only (and ignore rest of robot)

Compute the force and moment at the previous link

using Newton’s and Euler’s (rotation) equations 

Assume we know: 

(e.g. we have a force/torque sensor at the end-effector)



❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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Then, proceed
backwards to compute
Forces and moments

Moving backwards down 

the chain compute 

forces/moments of next link



❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link 
accelerations, starting 
from the base

A recursive algorithm for articulated robots: intuitions
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Then, proceed
backwards to compute
Forces and moments
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A recursive algorithm for articulated robots

❏ The Recursive Newton-Euler Algorithm (RNEA) gives us an iterative way to 

compute Inverse Dynamics:

❏ Without requiring to work out the mass matrix. However we still need M for 

forward dynamics
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𝑅𝑁𝐸𝐴(𝐪, 𝐪
·
, 𝐪
··
) = 𝜏



Can RNEA be used to compute the mass matrix? 

❏ A trick is to compute M column by column by setting:

❏ In such a case RNEA return the ith column of M

❏ As a result, computing inverse dynamics is faster than forward dynamics:
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How do we control this ? (transition slide)
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General Robot System Dynamics



Computing M(q) and F(q, dq)

❏ More compact form as:

There exist efficient algorithms to compute M and F. 

This is implemented in pinocchio
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Implications for (multi-body) dynamics
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Joint Space control

What if we directly use desired reference acceleration? 

Tiny errors in acceleration will accumulate greatly over time and this 

makes this an unstable approach! 

Open loop
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This is a standard and convenient way of tracking a 

reference trajectory when the robot dynamics are 

known: all the joints will behave exactly like a 1D point 

mass around the reference trajectory! 

Joint Space control



• We discuss the following three topics today:

• 1D point mass

• A ‘general’ dynamic robot ( → Dynamics II)

• Joint space control method
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Summary
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