

Advanced Robotics

Dynamics II

Subramanian Ramamoorthy School of Informatics University of Edinburgh

Outline

❏ We discuss the following three topics today:

❏ 1D point mass

❏ A 'general' dynamic robot (=> Dynamics II)

❏ Joint space control

 \Box For now we assume that the robot is fully actuated and that $\mathbf{v}_q = \dot{\mathbf{q}}$

(ie velocity and configuration space have the same dimension)

❏ We also assume motors are equipped with accurate **position** sensors (ie we know **q** accurately)

Forward and inverse dynamics

❏ As for geometry and kinematics, we are interested in two formulations of the dynamics of a system

❏ Forward dynamics: Given **q**, **v^q** and , compute joint accelerations

Useful for *simulation*

□ Inverse dynamics: Given q , v_q and \dot{v}_q , compute torque commands τ

Useful for *control*

Two approaches to dynamics

❏ Lagrangian dynamics

- ❏ Intuitive variational formulation (principles you may already be familiar with)
- ❏ Equations get messy quite quickly

❏ Newton-Euler dynamics

- ❏ Not so intuitive, we'll focus mainly on the ideas (detailed derivations in all standard texts)
- ❏ Newton-Euler is practically used in robotics because efficient *recursive* algorithms can be derived from the formulation

Lagrangian dynamics

❏ In classic mechanics, as you would have seen in secondary school, we have the core concept of mechanical energy

- ❏ Example: free fall of a point mass
	- ❏ Kinetic Energy T

$$
T=\frac{1}{2}m\dot{y}^2
$$

❏ Potential Energy U (gravitational)

 $U = mgy$

❏ If only *conservative* forces are applied, total energy E = T + U is constant

y

Lagrangian dynamics –intuitions

 $L(y, \dot{y}) = T - U = \frac{1}{2}m\dot{y}^2 - mgy$ ❏ Let's write

❏ We can verify that

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{y}}\right) = \frac{\partial L}{\partial y}
$$

$$
\frac{\partial L}{\partial \dot{y}}=m\dot{y}
$$

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{y}}\right)=m\ddot{y}
$$

$$
\frac{\partial L}{\partial y}=-mg
$$

Which brings us back to the very familiar Newton's law $F = ma$.

❏ L is called the Lagrangian, and concisely captures the physics

Lagrangian mechanics

❏ In the general case, it can be proven that this equation equates to the torques

$$
\frac{d}{dt}\left(\frac{\partial L(\mathbf{q},\dot{\mathbf{q}})}{\partial \dot{y}}\right)-\frac{\partial L(\mathbf{q},\dot{\mathbf{q}})}{\partial y}=\tau
$$

❏ We won't prove this (all variational calculus and mechanics books will cover this - if you were interested), just show it on another example

Example: Equation of motion of a 1-DOF robot arm

mass of pendulum: m

moment of inertia (about pivot point): $\binom{1}{p}$

(pendulum)

Example: Equation of motion of a 1-DOF robot arm

mass of pendulum: m

moment of inertia (about pivot point): $\binom{1}{p}$

(pendulum)

 $I_p q$ ·· $=$ \sum \boldsymbol{i} τ_i Newton's second law : $\tau_g = -rmgsin(q)$ Gravity torque τ_m Motor torque

Example: Equation of motion of a 1-DOF robot arm

mass of pendulum: m

moment of inertia (about pivot point): ${}^{I}P$

(pendulum)

 $I_p q$ ·· $=$ \sum \boldsymbol{i} τ_i Newton's second law : $\tau_g = -rmgsin(q)$ Gravity torque τ_m Motor torque

Lagrangian computation

$$
T(q) = \frac{1}{2}I_p\dot{q}^2 \quad U(q) = mgh, \quad \text{where} \quad h = r(1 - \cos(q))
$$

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) = I_p\ddot{q} \qquad \frac{\partial L}{\partial q} = \frac{\partial}{\partial q}(mgr(1 - \cos(q)) = -mgrsin(q))
$$

$$
\tau_m = \frac{d}{dt}\left(\frac{\partial L(\mathbf{q}, \dot{\mathbf{q}})}{\partial \dot{q}}\right) - \frac{\partial L(\mathbf{q}, \dot{\mathbf{q}})}{\partial q}
$$

$$
\tau_m = I_p\ddot{\mathbf{q}} + rmssin(\mathbf{q})
$$

Why use the Lagrangian?

(1

- ❏ Newton's law equations consider each rigid body *individually.* The problem is that we will have to also consider constraint forces (e.g. double pendulum equations below – source: wolfram)
	- ❏ Lagrangian formulations nicely *incorporates* all of these considerations
- ❏ Things get rapidly complicated when we write out complete equations of motion. The differential equations for the double pendulum system are respectively:

$$
m_1 + m_2 \frac{L_1^2 \ddot{\theta}_1 + m_2 L_1 L_2 \cos(\theta_1 - \theta_2) \ddot{\theta}_2 + m_2 L_1 L_2 \sin(\theta_1 - \theta_2) \dot{\theta}_2^2 + g(m_1 + m_2) L_1 \sin(\theta_1) = 0
$$

$$
m_2 L_1 L_2 \cos (\theta_1 - \theta_2) \ddot{\theta}_1 + m_2 L_2^2 \ddot{\theta}_2 + - m_2 L_1 L_2 \sin (\theta_1 - \theta_2) \dot{\theta}_1^2 + g m_2 L_2 \sin (\theta_2) = 0
$$

Indeed the behaviour is … chaotic

Canonical form for articulated rigid bodies

❏ We can regroup terms as follows

$$
\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{B}(\mathbf{q})[\dot{\mathbf{q}}\dot{\mathbf{q}}] + \mathbf{C}(\mathbf{q})[\dot{\mathbf{q}}^{2}] + \mathbf{G}(\mathbf{q}) = \tau
$$
\nInertia Matrix\n
$$
\begin{bmatrix}\n\mathbf{i}\mathbf{q} \\
\mathbf{j}\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{i}\mathbf{j} + \mathbf{j}\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{j}\n\mathbf{k}\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{k}\mathbf{k}\mathbf{k}\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{k}\mathbf{k}\mathbf{k}\mathbf{k}\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{k}\mathbf{k}\mathbf{k}\mathbf{k}\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{i}\mathbf{k}\n\end{bmatrix} =\n\begin{bmatrix}\n\dot{q}_{1}\dot{q}_{2} & \dot{q}_{1}\dot{q}_{3} & \dots & \dot{q}_{n-1}\dot{q}_{n}\n\end{bmatrix}^T
$$
\n
$$
[\dot{\mathbf{q}}^{2}] =\n\begin{bmatrix}\n\dot{q}_{1}^{2} & \dot{q}_{2}^{2} & \dots & \dot{q}_{n}^{2}\n\end{bmatrix}^T
$$

M,B,C,G are only configuration dependent

What are Coriolis forces?

Other representations in the literature

$$
\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}}+\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)+\mathbf{G}\left(\mathbf{q}\right)=\tau
$$

C is a vector with Coriolis plus centrifugal terms

$$
\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}}+\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)\dot{\mathbf{q}}+\mathbf{G}\left(\mathbf{q}\right)=\tau
$$

C is a matrix with Coriolis plus centrifugal terms

 $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{h}(\mathbf{q},\dot{\mathbf{q}}) = \tau$

More about the inertia matrix M(q):

❏ M defines the Kinetic energy of our robot:

$$
T(\mathbf{q},\dot{\mathbf{q}})=\frac{1}{2}\dot{\mathbf{q}}^{T}\mathbf{M}(\mathbf{q})\dot{\mathbf{q}}
$$

□ Because $T \geq 0, \forall (q, \dot{q})$, **M** is ?

More about the inertia matrix M(q):

❏ M defines the Kinetic energy of our robot:

$$
T(\mathbf{q},\dot{\mathbf{q}})=\frac{1}{2}\dot{\mathbf{q}}^{T}\mathbf{M}(\mathbf{q})\dot{\mathbf{q}}
$$

□ Because $T \ge 0$ **,** \forall **(q, q́)**, **M** is positive-definite

❏ As such it is invertible:

$$
\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}}+\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)+\mathbf{G}\left(\mathbf{q}\right)=\tau\quad\Longrightarrow\quad\ddot{\mathbf{q}}=\mathbf{M}\left(\mathbf{q}\right)^{-1}\left(-\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)-\mathbf{G}\left(\mathbf{q}\right)+\tau\right)
$$

This gives us the equations for forward and inverse dynamics

$$
\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}} + \mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right) + \mathbf{G}\left(\mathbf{q}\right) = \tau
$$

Inverse Dynamics equation = control

$$
\ddot{\mathbf{q}}=\mathbf{M}\left(\mathbf{q}\right)^{-1}\left(-\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)-\mathbf{G}\left(\mathbf{q}\right)+\tau\right)
$$

Forward Dynamics equation = simulation

❏ Based on Newton-Euler

❏ Based on Newton-Euler

p_{C1} denotes the coordinates of the first link *C¹, more on this next week*

Consider first link only (ignore rest of robot) Compute linear acceleration of Joint 1 at its COM $\ddot{\mathbf{p}}_{C_1}$ ω_1 Compute angular acceleration of Joint 1

❏ Based on Newton-Euler

❏ Based on Newton-Euler

❏ Based on Newton-Euler

First given $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}$ compute all link accelerations, starting from the base

Then, proceed backwards to compute Forces and moments

 $\mathbf{f}_{\rm n}, \mu_{\rm n}$

❏ Based on Newton-Euler

Consider last link only (and ignore rest of robot)

 ω_n $\ddot{\mathbf{p}}_{C_n}$

Assume we know: $\mathbf{f}_{\mathrm{end}}, \mu_{\mathrm{end}}$

(e.g. we have a force/torque sensor at the end-effector)

Compute the force and moment at the previous link using Newton's and Euler's (rotation) equations

First given $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}$ compute all link accelerations, starting from the base

 $\mathbf{f}_{\mathrm{end}}, \mu_{\mathrm{end}}$

Then, proceed backwards to compute Forces and moments

A recursive algorithm for articulated robots

❏ The Recursive Newton-Euler Algorithm (RNEA) gives us an iterative way to compute Inverse Dynamics:

$$
\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}}+\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)+\mathbf{G}\left(\mathbf{q}\right)=\tau
$$

 $RNEA(q, q)$ · , q ·· $) = \tau$

❏ Without requiring to work out the mass matrix. However we still need M for forward dynamics

$$
\ddot{\mathbf{q}}=\mathbf{M}\left(\mathbf{q}\right)^{-1}\left(-\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right)-\mathbf{G}\left(\mathbf{q}\right)+\tau\right)
$$

Can RNEA be used to compute the mass matrix?

❏ A trick is to compute M column by column by setting:

$$
\mathbf{g} = 0 \quad \dot{\mathbf{q}} = 0 \quad \ddot{q}_i = 1 \quad \ddot{q}_j = 0, \forall j \neq i
$$

❏ In such a case RNEA return the ith column of M

❏ As a result, computing inverse dynamics is faster than forward dynamics:

- $O(n^2)$ for computing *direct dynamics*,
- \bullet $O(n)$ for computing *inverse dynamics*.

How do we control this ? (transition slide)

General Robot System Dynamics

- State $x = (q, \dot{q}) \in \mathbb{R}^{2n}$
	- joint positions $q \in \mathbb{R}^n$
	- joint velocities $\dot{q} \in \mathbb{R}^n$
- Controls $u \in \mathbb{R}^n$ are the *torques* generated in each motor.
- The system dynamics are:

 $M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) = u$

- $M(q) \in \mathbb{R}^{n \times n}$ is positive definite intertia matrix (can be inverted \rightarrow forward simulation of dynamics)
- $C(q, \dot{q}) \in \mathbb{R}^n$ are the centripetal and coriolis forces
	- $G(q) \in \mathbb{R}^n$ are the gravitational forces
		- are the joint torques \boldsymbol{u}

Computing M(q) and F(q, dq)

❏ More compact form as:

There exist efficient algorithms to compute M and F. This is implemented in pinocchio

Implications for (multi-body) dynamics

• If we know the desired \ddot{q}^* for each joint, the eqn. $M(q)$ $\ddot{q}^* + F(q, \dot{q}) = u^*$ gives the desired torques.

Joint Space control

• Where could we get the desired \ddot{q}^* from?

Assume we have a nice smooth reference trajectory $q_{0:T}^{\text{ref}}$ (generated with some motion profile or alike), we can at each t read off the desired acceleration as

Open loop
$$
\overrightarrow{q_t^{ref}} := \frac{1}{\tau} [(q_{t+1} - q_t)/\tau - (q_t - q_{t-1})/\tau] = (q_{t-1} + q_{t+1} - 2q_t)/\tau^2
$$

What if we directly use desired reference acceleration?

Tiny errors in acceleration will **accumulate** greatly over time and this makes this an **unstable** approach!

Joint Space control

Choose a desired acceleration \ddot{q}^*_t that implies a PD-like behavior around the reference trajectory!

$$
\ddot{q}_t^* = \ddot{q}_t^{\text{ref}} + K_p(q_t^{\text{ref}} - q_t) + K_d(\dot{q}_t^{\text{ref}} - \dot{q}_t)
$$

$$
\oint
$$

$$
M(q) \ddot{q}^* + F(q, \dot{q}) = u^*
$$

This is a standard and convenient way of tracking a reference trajectory when the **robot dynamics are known**: *all the joints will behave exactly like a 1D point mass around the reference trajectory!*

- We discuss the following three topics today:
	- 1D point mass
	- A 'general' dynamic robot $($ \rightarrow Dynamics II)
	- Joint space control method $\ddot{q}_t^* = \ddot{q}_t^{\text{ref}} + K_p(q_t^{\text{ref}} q_t) + K_d(\dot{q}_t^{\text{ref}} \dot{q}_t)$ $M(q) \ddot{q}^* + F(q, \dot{q}) = u^*$