
Advanced Robotics

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh

Dynamics II

2

Outline

❏ We discuss the following three topics today:

❏ 1D point mass

❏ A ‘general’ dynamic robot (=> Dynamics II)

❏ Joint space control

❏ For now we assume that the robot is fully actuated and that

(ie velocity and configuration space have the same dimension)

❏ We also assume motors are equipped with accurate position sensors (ie we

know q accurately)

Forward and inverse dynamics

❏ As for geometry and kinematics, we are interested in two formulations of the

dynamics of a system

❏ Forward dynamics: Given q, vq and , compute joint accelerations

Useful for simulation

❏ Inverse dynamics: Given q, vq and , compute torque commands

Useful for control

13

Two approaches to dynamics

❏ Lagrangian dynamics

❏ Intuitive variational formulation (principles you may already be familiar with)

❏ Equations get messy quite quickly

❏ Newton-Euler dynamics

❏ Not so intuitive, we’ll focus mainly on the ideas (detailed derivations in all standard texts)

❏ Newton-Euler is practically used in robotics because efficient recursive algorithms can be

derived from the formulation

14

Lagrangian dynamics

❏ In classic mechanics, as you would have seen in secondary school, we have

the core concept of mechanical energy

❏ Example: free fall of a point mass

❏ Kinetic Energy T

❏ Potential Energy U (gravitational)

❏ If only conservative forces are applied, total energy E = T + U is constant

15

y

Lagrangian dynamics –intuitions

❏ Let’s write

❏ We can verify that

❏ Which brings us back to the very familiar Newton’s law F = ma.

❏ L is called the Lagrangian, and concisely captures the physics
16

Lagrangian mechanics

❏ In the general case, it can be proven that this equation equates to the torques

❏ We won’t prove this (all variational calculus and mechanics books will cover

this - if you were interested), just show it on another example

17

Example: Equation of motion of a 1-DOF robot arm

(pendulum)

18

center of
mass

gravity

q

mass of pendulum:

moment of inertia
(about pivot point):

𝐼𝑝

Example: Equation of motion of a 1-DOF robot arm

(pendulum)

19

center of
mass

gravity

q

mass of pendulum:

moment of inertia
(about pivot point):

𝐼𝑝

Ip𝐪
··
= ∑

𝑖
𝜏𝑖

Newton’s second law :

𝜏𝑔 = −𝑟𝑚𝑔sin(q)

𝜏𝑚

𝜏𝑚

Motor torque

Gravity torque𝑟sin(q)

Example: Equation of motion of a 1-DOF robot arm

(pendulum)

20

center of
mass

gravity

q

mass of pendulum:

moment of inertia
(about pivot point):

𝐼𝑝

Ip𝐪
··
= ∑

𝑖
𝜏𝑖

Newton’s second law :

𝜏𝑔 = −𝑟𝑚𝑔sin(q)

𝜏𝑚

𝜏𝑚

Motor torque

Gravity torque𝑟sin(q)

Lagrangian computation

21

center of
mass

gravity

q

𝜏𝑚

𝜏𝑚 = Ip𝐪
··
+ 𝑟𝑚𝑔sin(q)

Why use the Lagrangian?

❏ Newton’s law equations consider each rigid body individually. The problem is that we will have

to also consider constraint forces (e.g. double pendulum equations below – source: wolfram)

❏ Lagrangian formulations nicely incorporates all of these considerations

❏ Things get rapidly complicated when we write out complete equations of motion. The

differential equations for the double pendulum system are respectively:

22

Indeed the behaviour is … chaotic

23

Canonical form for articulated rigid bodies

❏ We can regroup terms as follows

24

Inertia Matrix

Coriolis Matrix

Centrifugal Matrix

Gravity Vector

External Forces

M,B,C,G are only configuration dependent

What are Coriolis forces?

25

Other representations in the literature

26

C is a vector with Coriolis plus centrifugal terms

C is a matrix with Coriolis plus centrifugal terms

More about the inertia matrix M(q):

❏ M defines the Kinetic energy of our robot:

❏ Because , M is ?

27

More about the inertia matrix M(q):

❏ M defines the Kinetic energy of our robot:

❏ Because , M is positive-definite

❏ As such it is invertible:

28

This gives us the equations for forward and inverse dynamics

29

Inverse Dynamics equation = control

Forward Dynamics equation = simulation

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

30

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

31

Consider first link only (ignore rest of robot)

Compute linear acceleration of Joint 1 at its COM

Compute angular acceleration of Joint 1

pC1 denotes the
coordinates of the
first link C1, more
on this next week

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

32
32

Compute accelerations of next link in chain

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

33

Until all link accelerations are known

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

34

Then, proceed
backwards to compute
Forces and moments

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

35

Then, proceed
backwards to compute
Forces and moments

Consider last link only (and ignore rest of robot)

Compute the force and moment at the previous link

using Newton’s and Euler’s (rotation) equations

Assume we know:

(e.g. we have a force/torque sensor at the end-effector)

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

36

Then, proceed
backwards to compute
Forces and moments

Moving backwards down

the chain compute

forces/moments of next link

❏ Based on Newton-Euler

Newton-Euler Algorithm gives a two-stage iterative procedure to compute Inverse Dynamics

First given
compute all link
accelerations, starting
from the base

A recursive algorithm for articulated robots: intuitions

37

Then, proceed
backwards to compute
Forces and moments

37

A recursive algorithm for articulated robots

❏ The Recursive Newton-Euler Algorithm (RNEA) gives us an iterative way to

compute Inverse Dynamics:

❏ Without requiring to work out the mass matrix. However we still need M for

forward dynamics

38

𝑅𝑁𝐸𝐴(𝐪, 𝐪
·
, 𝐪
··
) = 𝜏

Can RNEA be used to compute the mass matrix?

❏ A trick is to compute M column by column by setting:

❏ In such a case RNEA return the ith column of M

❏ As a result, computing inverse dynamics is faster than forward dynamics:

39

How do we control this ? (transition slide)

40

41

General Robot System Dynamics

Computing M(q) and F(q, dq)

❏ More compact form as:

There exist efficient algorithms to compute M and F.

This is implemented in pinocchio
42

43

Implications for (multi-body) dynamics

44

Joint Space control

What if we directly use desired reference acceleration?

Tiny errors in acceleration will accumulate greatly over time and this

makes this an unstable approach!

Open loop

45

This is a standard and convenient way of tracking a

reference trajectory when the robot dynamics are

known: all the joints will behave exactly like a 1D point

mass around the reference trajectory!

Joint Space control

• We discuss the following three topics today:

• 1D point mass

• A ‘general’ dynamic robot (→ Dynamics II)

• Joint space control method

46

Summary

	Slide 1: Advanced Robotics
	Slide 2
	Slide 13: Forward and inverse dynamics
	Slide 14: Two approaches to dynamics
	Slide 15: Lagrangian dynamics
	Slide 16: Lagrangian dynamics –intuitions
	Slide 17: Lagrangian mechanics
	Slide 18: Example: Equation of motion of a 1-DOF robot arm (pendulum)
	Slide 19: Example: Equation of motion of a 1-DOF robot arm (pendulum)
	Slide 20: Example: Equation of motion of a 1-DOF robot arm (pendulum)
	Slide 21: Lagrangian computation
	Slide 22: Why use the Lagrangian?
	Slide 23: Indeed the behaviour is … chaotic
	Slide 24: Canonical form for articulated rigid bodies
	Slide 25: What are Coriolis forces?
	Slide 26: Other representations in the literature
	Slide 27: More about the inertia matrix M(q):
	Slide 28: More about the inertia matrix M(q):
	Slide 29: This gives us the equations for forward and inverse dynamics
	Slide 30: A recursive algorithm for articulated robots: intuitions
	Slide 31: A recursive algorithm for articulated robots: intuitions
	Slide 32: A recursive algorithm for articulated robots: intuitions
	Slide 33: A recursive algorithm for articulated robots: intuitions
	Slide 34: A recursive algorithm for articulated robots: intuitions
	Slide 35: A recursive algorithm for articulated robots: intuitions
	Slide 36: A recursive algorithm for articulated robots: intuitions
	Slide 37: A recursive algorithm for articulated robots: intuitions
	Slide 38: A recursive algorithm for articulated robots
	Slide 39: Can RNEA be used to compute the mass matrix?
	Slide 40: How do we control this ? (transition slide)
	Slide 41
	Slide 42: Computing M(q) and F(q, dq)
	Slide 43
	Slide 44
	Slide 45
	Slide 46

