

Advanced Robotics

Inverse dynamics control

Subramanian Ramamoorthy School of Informatics University of Edinburgh

References

These slides are adapted, with permission, from lecture notes of <u>Andrea Del</u> <u>Prete</u>.

See also Ch 11 of Lynch and Park, Modern Robotics.

Summary on rigid body motion

□ The general form for the dynamics equation of articulated robots is:

 $\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}} + \mathbf{h}\left(\mathbf{q}, \dot{\mathbf{q}}\right) = \tau$

 \Box Assuming robot is fully actuated and that $v_{\mathbf{q}}=\dot{\mathbf{q}}$

□ This describes dynamics in the *configuration* space

□ As with geometry / kinematics, we are often mainly interested in the *task* space

Outline

□ Inverse dynamics control in the configuration space

□ Task-space inverse dynamics

Reminder on inverse dynamics

- \Box Given ${\bf q},\,\dot{{\bf q}}\,$ and $\ddot{{\bf q}}\,$, compute torque commands $\tau\,$ that achieve desired acceleration $\ddot{{\bf q}}^d$
- \Box Given a reference $\mathbf{q}^{r}(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^{r}(t)$
- \Box We assume we can measure q and \dot{q}

Reminder on inverse dynamics

- \Box Given ${\bf q},\, \dot{{\bf q}}\,$ and $\ddot{{\bf q}}\,$, compute torque commands $\tau\,$ that achieve desired acceleration $\ddot{{\bf q}}^d$.
- \Box Given a reference $\mathbf{q}^{r}(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^{r}(t)$

 \Box We assume we can measure q and \dot{q}

 \Box We set $\tau = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$, and now we must compute desired $\ddot{\mathbf{q}}^d$

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r$$

Inverse dynamics control in a nutshell

- \Box Given ${\bf q},\, \dot{{\bf q}}\,$ and $\ddot{{\bf q}}\,$, compute torque commands $\tau\,$ that achieve desired acceleration $\ddot{{\bf q}}^d$.
- \Box Given a reference $\mathbf{q}^{r}(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^{r}(t)$

 \Box We assume we can measure q and \dot{q}

 \Box We set $\tau = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$, and now we must compute desired $\ddot{\mathbf{q}}^d$

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r$$
 ?

Inverse dynamics control in a nutshell

- \Box Given **q**, $\dot{\mathbf{q}}$ and $\ddot{\mathbf{q}}$, compute torque commands τ that achieve desired acceleration $\ddot{\mathbf{q}}^d$.
- \Box Given a reference $\mathbf{q}^{r}(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^{r}(t)$

 \Box We assume we can measure q and \dot{q}

 \Box We set $\tau = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$, and now we must compute desired $\ddot{\mathbf{q}}^d$

$$\ddot{\mathbf{q}}^{d} = \ddot{\mathbf{q}}^{r} - \mathbf{K}_{p}(\mathbf{q} - \mathbf{q}^{r}) - \mathbf{K}_{v}(\dot{\mathbf{q}} - \dot{\mathbf{q}}^{r})$$
$$\overset{\mathbf{H}}{\overset{\mathbf{H}}{\mathbf{e}}} = \mathbf{\mathbf{q}}^{r} - \mathbf{K}_{p}(\mathbf{q} - \mathbf{q}^{r}) - \mathbf{K}_{v}(\dot{\mathbf{q}} - \dot{\mathbf{q}}^{r})$$

Simpler control laws for manipulator

$$\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + \mathbf{g}(\mathbf{q})$$
PD gravity torque

Even simpler is PID control:

$$\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + \int_0^t K_i e(s) ds$$

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID

Inverse Dynamics control as optimisation problem

□ As for inverse kinematics, we can write a least square problem:

$$(au^*, \ddot{q}^*) = \mathop{ ext{ argmin}}_{ au, \ddot{ extbf{q}}} || \ddot{ extbf{q}} - \ddot{ extbf{q}}^d ||^2$$

Subject to	$ au = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$
------------	--

□ The optimal solution to this is exactly the ID control law if we set

$$\ddot{\mathbf{q}}^{d} = \ddot{\mathbf{q}}^{r} - \mathbf{K}_{p}(\mathbf{q} - \mathbf{q}^{r}) - \mathbf{K}_{v}(\dot{\mathbf{q}} - \dot{\mathbf{q}}^{r})$$

So there may be no real advantage here, but the more general framing is useful for more complex problems

Least Square Problem (LSP) (reminder)

□ LSP taxonomy:

- □ An L₂ norm cost $||Ax b||^2$
- □ Possibly linear inequality / equality constraints ($Cx \le d$; Dx = x)

□ LSPs are a sub-class of convex Quadratic Problems (QPs) which have:

- **Quadratic cost** $x^T H x + h^T x$, with $H \ge 0$
- □ Possibly linear inequality / equality constraints ($Cx \le d$; Dx = x)

□ LSPs and QPs can be solved **extremely** fast with off-the-shelf software => compatible with real-time control loops (~ 1 KHz)

Main advantage of optimisation is constraints

□ e.g., adding torque limits is much more straightforward:

$$(au^*, \ddot{q}^*) = ext{ argmin } || \ddot{\mathbf{q}} - \ddot{\mathbf{q}}^d ||^2$$

Subject to $au = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$ $au^- \leq au \leq au^+$

Main advantage of optimisation is constraints

□ Assuming constant aceleration at each time step,

$$\dot{\mathbf{q}}(t + \Delta t) = \dot{\mathbf{q}}(t) + \Delta t \ddot{\mathbf{q}}$$

□ Joint velocities constraints:

$$egin{aligned} & (au^*, \ddot{q}^*) = ext{ argmin} \ ||\ddot{\mathbf{q}} - \ddot{\mathbf{q}}^d||^2 \ & \mathbf{y} = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h} \ & \mathbf{\tau} = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h} \ & \mathbf{\tau}^- \leq \mathbf{\tau} \leq \mathbf{\tau}^+ \ & \dot{\mathbf{q}}(t)^- \leq \dot{\mathbf{q}}(t) + \Delta t \ddot{\mathbf{q}} \leq \dot{\mathbf{q}}(t)^+ \end{aligned}$$

Main advantage of optimisation is constraints

□ Likewise for joint limits:

$$\mathbf{q}(t + \Delta t) = \mathbf{q}(t) + \Delta t \dot{\mathbf{q}}(t) + \frac{1}{2} \Delta t^2 \Delta t \ddot{\mathbf{q}}$$

□ However, we need caution, as this can result in high accelerations

- □ Incompatible with torque / current constraints
- □ Leads to infeasible problems (i.e. no solutions may exist)
- □ These issues are addressed in the research literature, but we will not discuss them further here

Task space inverse dynamics

 \Box Joint space ID control expects reference $\mathbf{q}^{r}(t)$

 \Box What if we only have reference **end-effector trajectory** $\mathbf{x}^{r}(t)$?

 \Box Option 1: compute corresponding $\mathbf{q}^{r}(t)$ then apply ID control

□ Issue 1: this is the inverse geometry problem, non-linear problem with infinity of solutions

 \Box Issue 2: Tracking $\mathbf{q}^r(t)$ is **sufficient** but not necessary to track $\mathbf{x}^r(t)$

This means that perturbations that affect $\mathbf{q}^r(t)$ but not the Forward Geometry FG(\mathbf{q}) are rejected

□ What might an option 2 be?

□ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

□ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

 \Box Let's differentiate \mathcal{V} :

$$egin{aligned} \mathcal{V} &= \mathbf{J}\dot{\mathbf{q}} \ \dot{\mathcal{V}} &= \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}} \end{aligned}$$

□ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

 \Box Let's differentiate \mathcal{V} :

$$egin{aligned} \mathcal{V} &= \mathbf{J}\dot{\mathbf{q}} \ \dot{\mathcal{V}} &= \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}} \end{aligned}$$

□ As a result, desired acceleration should be

$$\ddot{\mathbf{q}}^d = \mathbf{J}^+ (\dot{\mathcal{V}}^d - \dot{\mathbf{J}}\dot{\mathbf{q}})$$

□ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

 \Box Let's differentiate $\mathcal V$:

$$\begin{aligned} \mathcal{V} &= \mathbf{J} \dot{\mathbf{q}} \\ \dot{\mathcal{V}} &= \mathbf{J} \ddot{\mathbf{q}} + \dot{\mathbf{J}} \dot{\mathbf{q}} \end{aligned}$$

□ As a result, desired acceleration should be

$$\ddot{\mathbf{q}}^d = \mathbf{J}^+ (\dot{\mathcal{V}}^d - \dot{\mathbf{J}}\dot{\mathbf{q}})$$

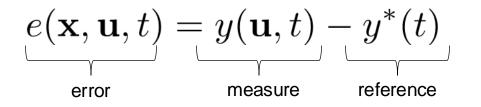
Again, the torques are obtained straightforwardly as $\tau = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$

Option 2 is often preferred

- + Gains defined in Cartesian space
- + No pre-computations
- + Online specification of reference trajectory
- More complex controller

Generalising the notion of task

- □ Not all tasks are just a matter of tracking end-effector trajectories
- □ Task = a control objective (as in examples at the start of the control lecture)
- □ A task can be described as a function *e* to minimise error (as in optimal control)
 - □ Denote e as measuring the **error** between the **real** and **reference** outputs



A large variety of such tasks can then fit into ID control. Relevant ones for your labs are postural tasks (tracking a reference configuration) and force control tasks, e.g. for contact interactions.

A very short note on contacts (for the lab)

We have seen that

$$\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$$

□ What if we introduce contacts?

We can write

$$\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h} + \mathbf{J}^T \mathbf{f}_c$$

Where \mathbf{f}_c is a 6D contact force. To control your robot for lifting the cube, you can set a desired \mathbf{f}_c on both effectors and use the control laws we have used before to compute the appropriate torques.

If equiped with a force sensor, you could also implement a PI control to track the error accurately.

More info on: <u>https://scaron.info/robotics/joint-torques-and-jacobian-transpose.html</u>