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Problem presentation

❏ X and U are functions of t:

X: t → x(t) nx

U: t → u(t) nu

❏ The terminal time T is fixed
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Recap from last time: 



Principle of optimality

❏ How to find the optimal control?

❏ Principle of optimality:

Subpath of optimal paths are also optimal 

for their own subproblem
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Recap from last time: 



Constructing an optimal policy

For every possible state we are in:

❏ There exists an optimal action towards the goal 
“Going to Jean Jaurès is optimal…”

❏ To know the action is optimal we need to know what
next action will be optimal

“… Because Jean Jaurès => Roseraie is optimal”

How is that helping?

If we know the cost of ALL actions from ALL states
at each state we can determine exactly what best action to take

A function that gives us an action to take for a given state is called 
a policy
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(How) to compute optimal policies for robotics problems?



Obvious limitations

❏ Curse of dimensionality:

How to solve for all possible states in high dimensions ?

(Especially considering continuous state/action spaces in robotics?)

❏ Reinforcement Learning (RL) aims at finding a computationally tractable 

representation of the value function (and through that the optimal policy, 

sometimes directly)
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RL for robotics – 2020[1]: quadrupedal locomotion

❏ Teacher / student

❏ Residual RL

13[1] Lee et al., Learning Quadrupedal Locomotion over Challenging Terrain, Science robotics 2020

https://youtu.be/9j2a1oAHDL8?feature=shared&t=32

https://youtu.be/9j2a1oAHDL8?feature=shared&t=32
https://youtu.be/9j2a1oAHDL8?feature=shared&t=32


RL for robotics – 2018: In-hand reorientation

❏ Domain randomization

❏ LSTM policy
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https://openai.com/research/learning-dexterity

https://openai.com/research/learning-dexterity
https://openai.com/research/learning-dexterity


RL for robotics – 2010[2]: Helicopter stunts

❏ Supervised learning to learn a dynamic model

❏ Inverse reinforcement learning

(learn value function from demonstrations)
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https://youtu.be/M-QUkgk3HyE

[2] Abeel et al., Autonomous Helicopter Aerobatics through Apprenticeship Learning, IJRR 2010

https://youtu.be/M-QUkgk3HyE
https://youtu.be/M-QUkgk3HyE


RL for robotics – 1997[3]: Pendulum swing up
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https://youtu.be/g3I2VjeSQUM?t=412

[3] Atkeson and Schaal, Robot learning from demonstration, ICML. 1997

https://youtu.be/g3I2VjeSQUM?t=412
https://youtu.be/g3I2VjeSQUM?t=412
https://youtu.be/g3I2VjeSQUM?t=412


Introduction to Concepts in 
Reinforcement Learning
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A familiar formalism



Scope
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Reward

Image credit: L. M. Tenkes, source: https://araffin.github.io/post/sb3/
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Model of the environment
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Model of the agent
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Goal
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Value functions

Finding the optimal policy / finding the optimal value function are dual problems
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Components of an RL algorithm
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A partial taxonomy of RL algortihms

There are many partial taxonomies, this one is from Josh Achiam, Spinning Up in Deep Reinforcement Learning.
https://spinningup.openai.com
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https://spinningup.openai.com/


What now?

❏ We’ll briefly discuss the structure of a few major algorithms
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Value-based reinforcement learning
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2D grid world (taken from https://edin.ac/48JKP5X )

❏ State st: (x,y) coordinate

❏ Action: Move up / down /   left / right / terminate*

(0,1) / (0,-1) / (-1,0) / (1,0) /  (0,0)

❏ Reward r(s,a,s’): reward from transitioning

from s to s’ through action a 

+1 in green cell / -1 in red cell

❏ Model st+1 = st + at (bounded by walls / holes)

30* Only action possible at red and green states

https://edin.ac/48JKP5X


Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)
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Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all 

states reachable from any action from current state times 

discount factor:
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Stop when value function is no longer significantly updated



Policy extraction

❏ Optimal policy obtained by selecting

action that maximises reward

❏ With 
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Stochastic version

❏ Extension is straightforward:

becomes the sum of prob. to reach all states when taking action a:

The rest of the algorithm is exactly the same
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Value iteration summary

❏ Requires complete knowledge of the MDP 

including transition probabilities and rewards

❏ Requires tractable problem size

❏ What if model is not known / too complex?
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Q-learning – model-free learning

❏ Idea: approximate               by running episodes and value iteration update

❏ Select sequence of actions until terminal state is reached

❏ Stochastic model: same action from same state can lead to different results

Introducing learning rate                  : desire to change opinion when facing new outcomes

❏ As for value iteration, arbitrary initialisation (or guided by initial guess)

❏ A time t, from st choose at , compute rt and update as follows (img src: Wikipedia)
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Q-learning - shortcomings

❏ Q-learning still assumes discrete environments (store Q in tables)

❏ In most continuous settings, a same state might never be visited twice

We also do not want to ignore similar states

❏ We can combine Q-learning with function approximation for larger problems

For instance using a neural network as a function approximator to replace the Q-table

Not covered here, though an example is given in tutorial notebook
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Policy-based Reinforcement learning
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Policy-based learning

❏ Idea: instead of learning the value function, directly learn a policy (the dual 

problem)

Useful when policy is simpler to describe than the value function (e.g. simpler control law than full 

dynamics model) or policy ‘extraction’ is harder (e.g. action space is too large or infinite)

❏ As with value iteration, policy iteration methods also exist

❏ This leads us to a technique called the policy gradient method
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Policy gradient methods

❏ Assume policy      is differentiable and parametrised by vector

❏ Estimate the reward R returned by the policy (we’ll come to this)

❏ For minimising cost in optimisation, we typically perform gradient descent

❏ To maximise the reward, we will perform gradient ascent:

❏ With     being the step size

❏ maximises the expected return

❏ being the policy gradient 47



Computing 

❏ One can rigorously prove the following statement:

❏ We will simply accept this for the purposes of this lecture
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Policy gradient algorithms
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The REINFORCE algorithm
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Dropping the expectation
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[Ach18] : Josh Achiam, Spinning Up in Deep Reinforcement Learning. https://spinningup.openai.com

https://spinningup.openai.com/
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