
Advanced Robotics

Steve Tonneau – With some content borrowed from Stephane Caron
School of Informatics

University of Edinburgh

Introduction to Reinforcement Learning

Problem presentation

❏ X and U are functions of t:

X: t → x(t) nx

U: t → u(t) nu

❏ The terminal time T is fixed

2

min
𝑋,𝑈

න
0

𝑇

𝑙 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡 + 𝑙𝑇 𝑥 𝑇

s.t. ሶ𝑥(t) = f(x(t),u(t))
Path cost

Terminal cost

Recap from last time:

Principle of optimality

❏ How to find the optimal control?

❏ Principle of optimality:

Subpath of optimal paths are also optimal

for their own subproblem

3

Recap from last time:

Constructing an optimal policy

For every possible state we are in:

❏ There exists an optimal action towards the goal
“Going to Jean Jaurès is optimal…”

❏ To know the action is optimal we need to know what
next action will be optimal

“… Because Jean Jaurès => Roseraie is optimal”

How is that helping?

If we know the cost of ALL actions from ALL states
at each state we can determine exactly what best action to take

A function that gives us an action to take for a given state is called
a policy

4

Constructing an optimal policy

For every possible state we are in:

❏ There exists an optimal action towards the goal
“Going to Jean Jaurès is optimal…”

❏ To know the action is optimal we need to know what
next action will be optimal

“… Because Jean Jaurès => Roseraie is optimal”

How is that helping?

If we know the cost of ALL actions from ALL states
at each state we can determine exactly what action to take

A function that gives us an action to take for a given state is called
a policy

5

(How) to compute optimal policies for robotics problems?

Obvious limitations

❏ Curse of dimensionality:

How to solve for all possible states in high dimensions ?

(Especially considering continuous state/action spaces in robotics?)

❏ Reinforcement Learning (RL) aims at finding a computationally tractable

representation of the value function (and through that the optimal policy,

sometimes directly)

12

RL for robotics – 2020[1]: quadrupedal locomotion

❏ Teacher / student

❏ Residual RL

13[1] Lee et al., Learning Quadrupedal Locomotion over Challenging Terrain, Science robotics 2020

https://youtu.be/9j2a1oAHDL8?feature=shared&t=32

https://youtu.be/9j2a1oAHDL8?feature=shared&t=32
https://youtu.be/9j2a1oAHDL8?feature=shared&t=32

RL for robotics – 2018: In-hand reorientation

❏ Domain randomization

❏ LSTM policy

14

https://openai.com/research/learning-dexterity

https://openai.com/research/learning-dexterity
https://openai.com/research/learning-dexterity

RL for robotics – 2010[2]: Helicopter stunts

❏ Supervised learning to learn a dynamic model

❏ Inverse reinforcement learning

(learn value function from demonstrations)

15

https://youtu.be/M-QUkgk3HyE

[2] Abeel et al., Autonomous Helicopter Aerobatics through Apprenticeship Learning, IJRR 2010

https://youtu.be/M-QUkgk3HyE
https://youtu.be/M-QUkgk3HyE

RL for robotics – 1997[3]: Pendulum swing up

16

https://youtu.be/g3I2VjeSQUM?t=412

[3] Atkeson and Schaal, Robot learning from demonstration, ICML. 1997

https://youtu.be/g3I2VjeSQUM?t=412
https://youtu.be/g3I2VjeSQUM?t=412
https://youtu.be/g3I2VjeSQUM?t=412

Introduction to Concepts in
Reinforcement Learning

17

A familiar formalism

Scope

19

Reward

Image credit: L. M. Tenkes, source: https://araffin.github.io/post/sb3/
20

Model of the environment

21

Model of the agent

22

Goal

23

Value functions

Finding the optimal policy / finding the optimal value function are dual problems

24

Components of an RL algorithm

25

A partial taxonomy of RL algortihms

There are many partial taxonomies, this one is from Josh Achiam, Spinning Up in Deep Reinforcement Learning.
https://spinningup.openai.com

26

https://spinningup.openai.com/

What now?

❏ We’ll briefly discuss the structure of a few major algorithms

28

Value-based reinforcement learning

29

2D grid world (taken from https://edin.ac/48JKP5X)

❏ State st: (x,y) coordinate

❏ Action: Move up / down / left / right / terminate*

(0,1) / (0,-1) / (-1,0) / (1,0) / (0,0)

❏ Reward r(s,a,s’): reward from transitioning

from s to s’ through action a

+1 in green cell / -1 in red cell

❏ Model st+1 = st + at (bounded by walls / holes)

30* Only action possible at red and green states

https://edin.ac/48JKP5X

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

31

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

32

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

33

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

34

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

35

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

36

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

37

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

❏

38

Value iteration / Dynamic programming

❏ Iterative algorithm to learn Value function

❏ Start: initial value function (typically 0 everywhere)

❏ At step i:

❏ Assume value of each neighbour state is optimal value

❏ Update current value as state value + maximum value of all

states reachable from any action from current state times

discount factor:

39

Stop when value function is no longer significantly updated

Policy extraction

❏ Optimal policy obtained by selecting

action that maximises reward

❏ With

40

Stochastic version

❏ Extension is straightforward:

becomes the sum of prob. to reach all states when taking action a:

The rest of the algorithm is exactly the same

41

Value iteration summary

❏ Requires complete knowledge of the MDP

including transition probabilities and rewards

❏ Requires tractable problem size

❏ What if model is not known / too complex?

42

Q-learning – model-free learning

❏ Idea: approximate by running episodes and value iteration update

❏ Select sequence of actions until terminal state is reached

❏ Stochastic model: same action from same state can lead to different results

Introducing learning rate : desire to change opinion when facing new outcomes

❏ As for value iteration, arbitrary initialisation (or guided by initial guess)

❏ A time t, from st choose at , compute rt and update as follows (img src: Wikipedia)

43

Q-learning - shortcomings

❏ Q-learning still assumes discrete environments (store Q in tables)

❏ In most continuous settings, a same state might never be visited twice

We also do not want to ignore similar states

❏ We can combine Q-learning with function approximation for larger problems

For instance using a neural network as a function approximator to replace the Q-table

Not covered here, though an example is given in tutorial notebook

44

Policy-based Reinforcement learning

45

Policy-based learning

❏ Idea: instead of learning the value function, directly learn a policy (the dual

problem)

Useful when policy is simpler to describe than the value function (e.g. simpler control law than full

dynamics model) or policy ‘extraction’ is harder (e.g. action space is too large or infinite)

❏ As with value iteration, policy iteration methods also exist

❏ This leads us to a technique called the policy gradient method

46

Policy gradient methods

❏ Assume policy is differentiable and parametrised by vector

❏ Estimate the reward R returned by the policy (we’ll come to this)

❏ For minimising cost in optimisation, we typically perform gradient descent

❏ To maximise the reward, we will perform gradient ascent:

❏ With being the step size

❏ maximises the expected return

❏ being the policy gradient 47

Computing

❏ One can rigorously prove the following statement:

❏ We will simply accept this for the purposes of this lecture

48

Policy gradient algorithms

49

The REINFORCE algorithm

50
Dropping the expectation

51

[Ach18] : Josh Achiam, Spinning Up in Deep Reinforcement Learning. https://spinningup.openai.com

https://spinningup.openai.com/

	Slide 1: Advanced Robotics
	Slide 2: Problem presentation
	Slide 3: Principle of optimality
	Slide 4: Constructing an optimal policy
	Slide 5: Constructing an optimal policy
	Slide 12: Obvious limitations
	Slide 13: RL for robotics – 2020[1]: quadrupedal locomotion
	Slide 14: RL for robotics – 2018: In-hand reorientation
	Slide 15: RL for robotics – 2010[2]: Helicopter stunts
	Slide 16: RL for robotics – 1997[3]: Pendulum swing up
	Slide 17: Introduction to Concepts in Reinforcement Learning
	Slide 18: A familiar formalism
	Slide 19: Scope
	Slide 20: Reward
	Slide 21: Model of the environment
	Slide 22: Model of the agent
	Slide 23: Goal
	Slide 24: Value functions
	Slide 25: Components of an RL algorithm
	Slide 26: A partial taxonomy of RL algortihms
	Slide 28: What now?
	Slide 29: Value-based reinforcement learning
	Slide 30: 2D grid world (taken from https://edin.ac/48JKP5X)
	Slide 31: Value iteration / Dynamic programming
	Slide 32: Value iteration / Dynamic programming
	Slide 33: Value iteration / Dynamic programming
	Slide 34: Value iteration / Dynamic programming
	Slide 35: Value iteration / Dynamic programming
	Slide 36: Value iteration / Dynamic programming
	Slide 37: Value iteration / Dynamic programming
	Slide 38: Value iteration / Dynamic programming
	Slide 39: Value iteration / Dynamic programming
	Slide 40: Policy extraction
	Slide 41: Stochastic version
	Slide 42: Value iteration summary
	Slide 43: Q-learning – model-free learning
	Slide 44: Q-learning - shortcomings
	Slide 45: Policy-based Reinforcement learning
	Slide 46: Policy-based learning
	Slide 47: Policy gradient methods
	Slide 48: Computing
	Slide 49: Policy gradient algorithms
	Slide 50: The REINFORCE algorithm
	Slide 51

