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Dynamics

Digital System and Digital Controllers (PID)
Path & Motion Planning |, I

Optimisation
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. Hardware Labs

0. No reinforcement learning



Homogeneous Transformation Matrix

- Ap = ARBBp t =>annoying to write (especially when composing)

1 This operation can be written in matrix form:

“Ap|]  [“Rp t]| [Pp

1 03 1 1
AMpcR4Xx4
1 With
BR, —-PRt
B (A -1 A A
My = (4Mp)~ ! = [ 0, ) ]



Special groups for rotations

An element of the group.... Can be represented as ...
r e 30(3) 2 R € R3X3 Rotation matrix
rotation qe€ H ~ R4, ||q|| =1 quatemion

W € 80(3) ~ R3 A velocity ?

m € SE(3) ~ R3xSO(B3) T R3 x R3*3 ~ R*X4 Homogeneous

matrix

3 7
displacement translation rotation R X H ~ R
A\ ~ o6 A spatial
v S 86(3) — lw] — R velocity ?




Kinematic chain and map

Generally, frames placed as follows to M,
simplify the variable transformations

joint

Black placements are constant transt. AMA,(* »
relative
“"Meyy offeet

link WM A
transf.

Red placement are functions of g (

Point of interest often
not on effector frame origin

Y Mesr(q) = Y MA*Ma (@)Y MpPMp (q)P'Mc“ Mo (q)¢" Mg ¢



Forward / inverse kinematics

1 Forward kinematics consists, given configuration and velocity in configuration
space, in computing the velocity of a rigid body in the cartesian space:

FK:q,vg — v

J Inverse kinematics consists, given a desired velocity v* in the cartesian space
(and the current configuration), in computing a velocity in the configuration
space result in a velocity as close as possible to v™*:

IK :v*,q — v,



Solution to the unconstrained IK problem:

With JT Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits,
velocity limits, etc:



IK with constraints: quadratic programming

min,, ||J(q)v, — v*||?
1 Velocity bounds vallJ(@)vg |

(element-wise) st. Uy S Vg < ’U;

3 Joint bounds a- <q+Aty, <q"
(using euler integration over a time step)

1 Can also add other cost functions...

- ‘Uq* = Jv* no longer optimal solution
However, easy to solve using a Quadratic Program solver (e.g. quadprog)



Generalising the notion of task

1 Not all tasks are just a matter of tracking end-effector trajectories
1 Task = a control objective (as in examples at the start of the control lecture)

1 Atask can be described as a function e to minimise error (as in optimal control)

1 Denote e as measuring the error between the real and reference outputs

e(x,u,t) = y(u,t) —y*(t)
erIor me;sure referYence

1 Alarge variety of such tasks can then fit into ID control. Relevant ones for your
labs are postural tasks (tracking a reference configuration) and force control
tasks, e.g. for contact interactions. 10



IK vs |G

1 Inverse kinematics (also called differential IK) is a linear, convex problem, very
easy to solve

1 Inverse geometry (also called IK) is a non-linear problem, very hard to solve
1 When trying to solve |G iteratively, we can use the pseudo-inverse of the

jacobian to locally update a configuration towards one that is closer to the goal.
This is similar to performing one step of gradient descent (See example after)



The configuration space (Lozano-Perez 83)

1 Robot posture is a point g in the configuration space C, of dimension n, or n+6 if
root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)

1 Each internal dof represented by a joint parameter, subset of g

1 If using quaternions to represent free-flyer rotation, q is represented with n+7 != n+6 variables

-
Y
z .
A q is used to
ro describe both a
_ n+7 quaternion and a
1= 23 cR configuration in the
4

littérature ...
8]
B
Y

3D environment W | Configuration space C | 12




2 manifolds (subsets) for C

1 Given a point g in C, using Forward Geometry we can determine whether:
1 qisin collision (in C,,) => p(q) = true

1 qgis notin collision (in Csee) => p(q) = false

1 Given:

1 a current configuration q,

1 a goal configuration g,

1 Design an algorithm to compute a collision free path from g to qj

13



Sampling based motion planning summary

1 We have (hopefully) come up with the principles for a global planning algorithm

1 A sampling based motion planning algorithm generates a graph were:
1 Nodes are points in the feasible space (in our case Cs,)
1 Edges are feasible paths between Nodes computing with a local steering method:
1 In geometric case, often obtained by interpolation

1 Can be as complex as required by the considered problem

1 The formulation is very generic and can be used to represent any robotics
planning problem (RRTs were developed for vehicle control, ie differential
constraints) 14



Basic RRT algorithm — single query variant

Pseudo code

Algorithm 1 BUILD_RRT(q;pt)

T .init(qinit ); /qnear
for k=1 to K do ‘\.

Grand — RANDOM_CONFIG(); / ®

Gnear < NEAREST _NEIGHBOR(¢,and, T);
if edge_Valid(and: Qnea'r‘) then
T .add_vertex(qrand); *—eo
T.add_edge(Qneara and); ‘

if close to_goal(q,ana) then Jinitial

return SUCCESS
return FAILURE

15



Rigid body dynamics equations

M(q)q+C(q,q)+G(q) =T

Cis a vector with Coriolis plus centrifugal terms

M(q)G+C(q.q)a+G(q) =7

C is a matrix with Coriolis plus centrifugal terms

M(q)g+h(q,q) ="

16



Joint Space Method

Choose a desired acceleration §; that implies a PD-like behavior
around the reference trajectory!

q; —Qtef‘|'K (g ref_Q)"‘Kd(qgef_q')
M(q) ¢ + F(q.q) = u”

This is a standard and convenient way of tracking a
reference trajectory when the robot dynamics are

known: all the joints will behave exactly like a 1D point
mass around the reference trajectory!

17



Inverse dynamics control in a nutshell

1 Given g, q and q , compute torque commands 7 that achieve desired
acceleration < .

1 Given a referenceq’ (t) find7(t) such that resultingq(7 (%)) followsq" (¢)
1 We assume we can measure q and q
0 We set 7 = Mg? + h, and now we must compute desired §°

Q' =4 - Ky(a—q") - K,(a—q")

\ } \ }
I. Y !

e e e

18



Simpler control laws for manipulator

T = _\Kdé — er; + g(q)

/
PD gravity torque

Even simpler is PID control:

T=—-Kq4&— Kye + fg K;e(s)ds

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID

19



Inverse Dynamics control as optimisation problem

1 As for inverse kinematics, we can write a least square problem:

(7%,4*) = argmin ||§ — §°|”

Subject to T = Mq + h

1 The optimal solution to this is exactly the ID control law if we set
—d . . .
4a°=4q" - Ky(a—q") - K,(a—q")

1 So there may be no real advantage here, but the more general framing is

useful for more complex problems
20



Least Square Problem (LSP) (reminder)

1 LSP taxonomy:

A An L, norm cost ||AX - b]||?

1 Possibly linear inequality / equality constraints (Cx <=d ; D x = x)

1 LSPs are a sub-class of convex Quadratic Problems (QPs) which have:
1 Quadratic cost x"TH x + hTx , with H>=0

1 Possibly linear inequality / equality constraints (Cx <=d ; D x = x)

1 LSPs and QPs can be solved extremely fast with off-the-shelf software
=> compatible with real-time control loops (~ 1 KHz)
21



Main advantage of optimisation is constraints

1 e.g., adding torque limits is much more straightforward:

(7%,4*) = argmin ||§ — §°|”

Subject to T = Mq + h
T <7<7T"

22



Main advantage of optimisation is constraints

1 Assuming constant aceleration at each time step,
q(t+ At) = q(t) + Atq
1 Joint velocities constraints:
(7%,4*) = argmin ||§ — §°|"

Subject to T = Mq -+ h
7T <7< Tt
at)” <qt)+Atg < )"t

23



Optimal control

T
min l(x(t), u(t))dt + lT(x(T))

0

pathcos s.t. X(1) = f(x(t),u(1)

1 X and U are functions of t;

Terminal cost

Xt eR — x(t) eR™

U:t eR — u(t) eR™

Make sure you understand both TO labs

1 The terminal time T is fixed

24



Trajectory optimisation (tutorials 6 and 7)

25
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