

Advanced Robotics

Revision Lecture

Steve Tonneau
School of Informatics
University of Edinburgh

Exam: MAYBE NOT UP TO DATE!

□ Please check website for the latest info: https://exams.is.ed.ac.uk/

INFR11213: Advanced Robotics (INFR11213)

Venue

Playfair Library

Date: Saturday, 13th December 2025

Time: 2:30 p.m. to 4:30 p.m.

Duration: 2:00

Exam Topics

- 1. Coordinate Transformations
- 2. Forward and Inverse Geometry
- 3. Dynamics
- 4. Digital System and Digital Controllers (PID)
- 5. Path & Motion Planning I, II
- 6. Optimisation
- 7. Tutorials
- 8. Software Lab
- 9. Hardware Labs
- 10. No reinforcement learning

Homogeneous Transformation Matrix

- $\Box^A \mathbf{p} = {}^A \mathbf{R}_B {}^B \mathbf{p} + \mathbf{t} =$ annoying to write (especially when composing)
- ☐ This operation can be written in matrix form:

$$\begin{bmatrix} {}^{A}\mathbf{p} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} {}^{A}\mathbf{R}_{B} & t \\ \mathbf{0}_{3} & 1 \end{bmatrix}}_{A\mathbf{M}_{B} \in \mathbb{R}^{4 \times 4}} \begin{bmatrix} {}^{B}\mathbf{p} \\ 1 \end{bmatrix}$$

■ With

$${}^{B}\mathbf{M}_{A} = ({}^{A}\mathbf{M}_{B})^{-1} = \begin{bmatrix} {}^{B}\mathbf{R}_{A} & -{}^{B}\mathbf{R}_{A}t \\ \mathbf{0}_{3} & 1 \end{bmatrix}$$

Special groups for rotations

An element of the group....

Can be represented as ...

 $r \in SO(3)$

 $\mathbf{R} \in \mathbb{R}^{3 \times 3}$

Rotation matrix

rotation

$$\mathbf{q} \in \mathbb{H} \simeq \mathbb{R}^4, \|\mathbf{q}\| = \mathbf{1}$$
 quaternion $\mathbf{w} \in so(3) \simeq \mathbb{R}^3$ A velocity f

$$\mathbf{w} \in so(3) \simeq \mathbb{R}^3$$

A velocity?

$$m \in SE(3)$$

displacement

$$\simeq$$
 $\mathbb{R}^3 imes$

$$\mathbb{R}^3 \times SO(3)$$

$$\simeq$$
 $\mathbb{R}^3 \times SO(3)$ \simeq $\mathbb{R}^3 \times \mathbb{R}^{3 \times 3} \simeq \mathbb{R}^{4 \times 4}$

$$^3\simeq \mathbb{R}^{4 imes 4}$$

Homogeneous matrix

$$\mathbb{R}^3 \times \mathbb{H} \simeq \mathbb{R}^7$$

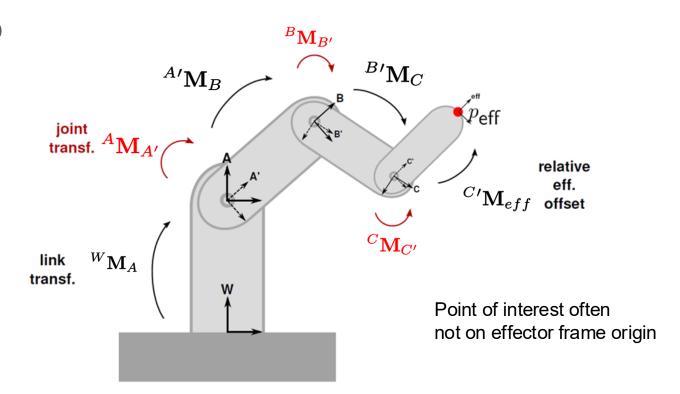
$$\mathcal{V} \in se(3) = egin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} \simeq \mathbb{R}^6$$

Kinematic chain and map

Generally, frames placed as follows to simplify the variable transformations

Black placements are constant

Red placement are functions of q



$${}^{W}\mathbf{M}_{eff}(\mathbf{q}) = {}^{W}\mathbf{M}_{A}{}^{A}\mathbf{M}_{A'}(\mathbf{q}){}^{A'}\mathbf{M}_{B}{}^{B}\mathbf{M}_{B'}(\mathbf{q}){}^{B'}\mathbf{M}_{C}{}^{C}\mathbf{M}_{C'}(\mathbf{q}){}^{C'}\mathbf{M}_{eff}$$

Forward / inverse kinematics

☐ Forward **kinematics** consists, given configuration and velocity in configuration space, in computing the velocity of a rigid body in the cartesian space:

$$FK: \mathbf{q}, \mathbf{v}_q \longrightarrow \nu$$

Inverse **kinematics** consists, given a desired velocity ν^* in the cartesian space (and the current configuration), in computing a velocity in the configuration space result in a velocity as close as possible to ν^* :

$$IK: \nu^*, \mathbf{q} \longrightarrow \mathbf{v}_q$$

Solution to the unconstrained IK problem:

$$v_q^* = J^\dagger \nu^*$$

With J^{\dagger} Moore Penrose pseudo-inverse

However, we could consider additional constraints to our problem: joint limits, velocity limits, etc:

IK with constraints: quadratic programming

☐ Velocity bounds (element-wise)

- $\min_{v_q} ||J(q)v_q \nu^*||^2$
- s.t. $v_q^- \le v_q \le v_q^+$
- $\mathbf{q}^- \leq \mathbf{q} + \Delta t v_q \leq \mathbf{q}^+$ (using euler integration over a time step)
- ☐ Can also add other cost functions...
- $u_q^* = J^\dagger \nu^*$ no longer optimal solution However, easy to solve using a Quadratic Program solver (e.g. quadprog)

Generalising the notion of task

- Not all tasks are just a matter of tracking end-effector trajectories
- ☐ Task = a control objective (as in examples at the start of the control lecture)
- ☐ A task can be described as a function *e* to minimise error (as in optimal control)
 - ☐ Denote e as measuring the **error** between the **real** and **reference** outputs

$$e(\mathbf{x}, \mathbf{u}, t) = y(\mathbf{u}, t) - y^*(t)$$
error measure reference

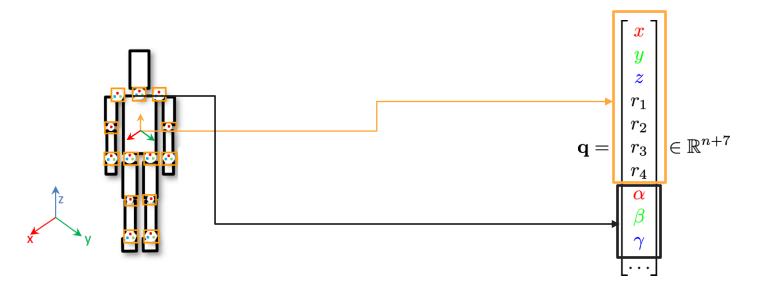
☐ A large variety of such tasks can then fit into ID control. Relevant ones for your labs are postural tasks (tracking a reference configuration) and force control tasks, e.g. for contact interactions.

IK vs IG

- □ Inverse kinematics (also called differential IK) is a linear, convex problem, very easy to solve
- ☐ Inverse geometry (also called IK) is a non-linear problem, very hard to solve
- □ When trying to solve IG iteratively, we can use the pseudo-inverse of the jacobian to locally update a configuration towards one that is closer to the goal. This is similar to performing one step of gradient descent (See example after)

The configuration space (Lozano-Peréz 83)

- □ Robot posture is a point **q** in the configuration space C, of dimension n, or n+6 if root is free (free-flyer joint), with n number of internal Degrees Of Freedom (dof)
 - Each internal dof represented by a joint parameter, subset of q
 - ☐ If using quaternions to represent free-flyer rotation, **q** is **represented** with n+7!= n+6 variables



q is used to describe both a quaternion and a configuration in the littérature ...

2 manifolds (subsets) for C

- ☐ Given a point q in C, using Forward Geometry we can determine whether:
 - \Box q is in collision (in C_{obs}) => p(q) = true
 - \square q is not in collision (in C_{free}) => p(q) = false
- ☐ Given:
 - a current configuration q_c
 - $oldsymbol{\square}$ a goal configuration $oldsymbol{\mathsf{q}}_{\mathsf{g}}$
- ☐ Design an algorithm to compute a collision free path from q_c to q_g

Sampling based motion planning summary

- ☐ We have (hopefully) come up with the principles for a global planning algorithm
- ☐ A sampling based motion planning algorithm generates a graph were:
 - Nodes are points in the feasible space (in our case C_{free})
 - Edges are feasible paths between Nodes computing with a local steering method:
 - ☐ In geometric case, often obtained by interpolation
 - Can be as complex as required by the considered problem
- ☐ The formulation is very generic and can be used to represent any robotics planning problem (RRTs were developed for vehicle control, ie differential constraints)

Basic RRT algorithm – single query variant

Pseudo code

```
Algorithm 1 BUILD_RRT(q_{init})
```

```
\mathcal{T}.	ext{init}(q_{init});

for k = 1 to K do

q_{rand} \leftarrow 	ext{RANDOM\_CONFIG}();

q_{near} \leftarrow 	ext{NEAREST\_NEIGHBOR}(q_{rand}, \mathcal{T});

if edge_valid(q_{rand}, q_{near}) then

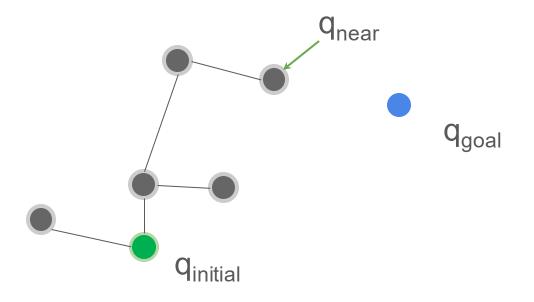
\mathcal{T}.	ext{add\_vertex}(q_{rand});

\mathcal{T}.	ext{add\_edge}(q_{near}, q_{rand});

if close_to_goal(q_{rand}) then

return SUCCESS

return FAILURE
```



Rigid body dynamics equations

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{G}(\mathbf{q}) = \tau$$

C is a vector with Coriolis plus centrifugal terms

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) = \tau$$

C is a matrix with Coriolis plus centrifugal terms

$$\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}} + \mathbf{h}\left(\mathbf{q}, \dot{\mathbf{q}}\right) = \tau$$

Joint Space Method

Choose a desired acceleration \ddot{q}_t^* that implies a *PD-like behavior* around the reference trajectory!

$$\ddot{q}_t^* = \ddot{q}_t^{\rm ref} + K_p(q_t^{\rm ref} - q_t) + K_d(\dot{q}_t^{\rm ref} - \dot{q}_t)$$

$$\downarrow M(q) \ \ddot{q}^* + F(q, \dot{q}) = u^*$$

This is a standard and convenient way of tracking a reference trajectory when the **robot dynamics are known**: all the joints will behave exactly like a 1D point mass around the reference trajectory!

Inverse dynamics control in a nutshell

- \Box Given ${\bf q},\,\dot{\bf q}$ and $\ddot{\bf q}$, compute torque commands τ that achieve desired acceleration $\ddot{\bf q}^d$.
- \Box Given a reference $\mathbf{q}^r(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^r(t)$
- \Box We assume we can measure \mathbf{q} and $\dot{\mathbf{q}}$
- \Box We set $au = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$, and now we must compute desired $\ddot{\mathbf{q}}^d$

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r - \mathbf{K}_p(\mathbf{q} - \mathbf{q}^r) - \mathbf{K}_v(\dot{\mathbf{q}} - \dot{\mathbf{q}}^r)$$

Simpler control laws for manipulator

$$\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + \mathbf{g}(\mathbf{q})$$
PD gravity torque

Even simpler is PID control:

$$\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + \int_0^t K_i e(s) ds$$

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID

Inverse Dynamics control as optimisation problem

☐ As for inverse kinematics, we can write a least square problem:

$$(au^*,\ddot{q}^*)= \mathop{
m argmin}_{ au,\ddot{\mathbf{q}}}||\ddot{\mathbf{q}}-\ddot{\mathbf{q}}^d||^2$$
 Subject to $au=\mathbf{M}\ddot{\mathbf{q}}+\mathbf{h}$

☐ The optimal solution to this is exactly the ID control law if we set

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r - \mathbf{K}_p(\mathbf{q} - \mathbf{q}^r) - \mathbf{K}_v(\dot{\mathbf{q}} - \dot{\mathbf{q}}^r)$$

☐ So there may be no real advantage here, but the more general framing is useful for more complex problems

Least Square Problem (LSP) (reminder)

- ☐ LSP taxonomy:
 - \Box An L₂ norm cost $||Ax b||^2$
 - \square Possibly linear inequality / equality constraints (Cx <= d; D x = x)
- ☐ LSPs are a sub-class of convex Quadratic Problems (QPs) which have:
 - \square Quadratic cost $x^T H x + h^T x$, with $H \ge 0$
 - \square Possibly linear inequality / equality constraints (Cx <= d; D x = x)
- □ LSPs and QPs can be solved **extremely** fast with off-the-shelf software
 => compatible with real-time control loops (~ 1 KHz)

Main advantage of optimisation is constraints

□ e.g., adding torque limits is much more straightforward:

$$(au^*,\ddot{q}^*)= \mathop{\mathrm{argmin}}_{ au,\ddot{\mathbf{q}}}||\ddot{\mathbf{q}}-\ddot{\mathbf{q}}^d||^2$$
 Subject to $au=\mathbf{M}\ddot{\mathbf{q}}+\mathbf{h}$ $au^-\leq au\leq au^+$

Main advantage of optimisation is constraints

Assuming constant aceleration at each time step,

$$\dot{\mathbf{q}}(t + \Delta t) = \dot{\mathbf{q}}(t) + \Delta t \ddot{\mathbf{q}}$$

Joint velocities constraints:

Optimal control

$$\min_{X,U} \int_0^T l(x(t), u(t))dt + l_T(x(T))$$
s.t. $\dot{x}(t) = f(x(t), u(t))$

X and U are functions of t:

$$X: t \in \mathbb{R} \to x(t) \in \mathbb{R}^{nx}$$

$$U: t \in \mathbb{R} \to u(t) \in \mathbb{R}^{\mathrm{nu}}$$

The terminal time T is fixed

Make sure you understand both TO labs

Terminal cost

Trajectory optimisation (tutorials 6 and 7)