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Dynamics vs. Kinematics

❏ So far we assumed that we can generate any vq on our robot 
(eg when looking at forward kinematics)

❏ However, this is rarely the case, eg:

❏ A flying airplane: You cannot command it to hold still in the air or move straight up

❏ A car: You cannot command it to move sideways

❏ Your arm: You can’t command it to throw a ball with arbitrary velocity (force limits)

❏ A torque-controlled robot: You cannot command it to instantaneously change velocity (infinite 
acceleration/torque)
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Actuation of a robot
An actuator needs a model:

❏ x is the state of the actuator / robot 

❏ u is the control input 

❏ The state at any time depends on both the previous state and the control input:

, with f assumed to be smooth

❏ Eg: when we looked at forward / inverse kinematics 
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Three classic models for a robot actuator

❏ Velocity source
Good approximation for hydraulic motors; good for electric actuators only in 
certain condition (eg industrial manipulators, not legged robots)
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Three classic models for a robot actuator

❏ Velocity source
Good approximation for hydraulic motors; good for electric actuators only in 
certain condition (eg industrial manipulators, not legged robots)

❏ Acceleration / force source
Good approximation for electric motors if large contact forces are not involved.

5



Three classic models for a robot actuator

❏ Velocity source
Good approximation for hydraulic motors; good for electric actuators only in 
certain condition (eg industrial manipulators, not legged robots)

❏ Acceleration / force source
Good approximation for electric motors if large contact forces are not involved.

❏ Torque source
Good approximation for electric motors. Assumption is that torque is proportional 
to current. However, gear reductions introduce unmodeled terms that we need to 
account for.
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Outline

❏ We discuss the following three topics today:

❏ 1D point mass 

❏ A ‘general’ dynamic robot ( Dynamics II)

❏ Joint space control

❏ For now we assume that the robot is fully actuated and that

(ie velocity and configuration space have the same dimension)

❏ We also assume motors are equipped with accurate position sensors (i.e. we know q 
accurately)
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Exercise on the Board
Discuss problem formulation and modelling assumptions associated with moving 
an object, along a computed trajectory, and controlling against deviations

- How to phrase the questions?

- How does analysis support design?



❏ no gravity, no friction

9

Simplest possible case: 1D point mass



1D Mass

❏ Given current qt, what control ut to get closer to desired position q*?
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❏ Given current qt, what control ut to get closer to desired position q*?

❏ Consider an applied force that is an input proportional to the “error”:
(difference here is that u is a force and not a velocity)

❏ You can picture a spring attached to q* that pulls the mass towards it. What 
happens in the absence of friction ?

1D Mass: Proportional Control
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 q=q(t) is a function of time, this is a second order differential eq.
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1D Mass: Closed-loop Dynamics



What’s the effect?

13

1D Mass: Closed-loop Dynamics
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Can we shape the dynamics further?

1D Mass: Damping forces
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Can we shape the dynamics further?

1D Mass: Damping forces



What is the effect?
 

16

1D Mass: Damping forces
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What’s the effect?

1D Mass: Damping forces



Alternative Parameterisation
Instead of specifying the coefficients  Kp and Kd
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1D Mass: Concept of damping ratio
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Adding another term to this Spring-damper system



❏ Dynamics of a 1D mass-spring-damper system, a spring and a damper added to a 
point mass, i.e. spring and damping forces (aka PD controller)

❏ Resultant force acting on the system in a linear ‘control law’

❏ With such simple linear rules, we can modulate the dynamic response of the system 
by tuning the ‘strength’ of spring and damper (i.e., PD gains in the PD ‘control law’)

❏ *trade-off: there is no optimality criterion supporting such rules and the resulting 
motions (hence, we may be able to do better)
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1D Mass: Summary
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