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Dynamics vs. Kinematics

1 So far we assumed that we can generate any v, on our robot

(eg when looking at forward kinematics)

1 However, this is rarely the case, eg:
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A flying airplane: You cannot command it to hold still in the air or move straight up
A car: You cannot command it to move sideways
Your arm: You can’t command it to throw a ball with arbitrary velocity (force limits)

A torque-controlled robot: You cannot command it to instantaneously change velocity (infinite
acceleration/torque)



Actuation of a robot

An actuator needs a model:
1 x is the state of the actuator / robot
3 u is the control input

d The state at any time depends on both the previous state and the control input:

Xi+1 = f(Xt, llt) , with f assumed to be smooth

1 Eg: when we looked at forward / inverse kinematics

X =q,u=Vq

f(q,Vq):(]@Vq 3



Three classic models for a robot actuator

J Velocity source X =q,u = vq
Good approximation for hydraulic motors; good for electric actuators only in
certain condition (eg industrial manipulators, not legged robots)
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Three classic models for a robot actuator

J Velocity source X =q,u = vq
Good approximation for hydraulic motors; good for electric actuators only in
certain condition (eg industrial manipulators, not legged robots)

(1 Acceleration / force source x = (q,vq),u= vq
Good approximation for electric motors if large contact forces are not involved.

1 Torque source  * 7 (@ vg)u=7

Good approximation for electric motors. Assumption is that torque is proportional
to current. However, gear reductions introduce unmodeled terms that we need to

account for.



J We discuss the following three topics today:
1 1D point mass
a A ‘general’ dynamic robot ( Dynamics II)

1 Joint space control

. Vo =
J For now we assume that the robot is fully actuated and that q q

(ie velocity and configuration space have the same dimension)

1 We also assume motors are equipped with accurate position sensors (i.e. we know q
accurately)



Exercise on the Board

Discuss problem formulation and modelling assumptions associated with moving
an object, along a computed trajectory, and controlling against deviations

- How to phrase the questions?

- How does analysis support design?



Simplest possible case: 1D point mass

4 no gravity, no friction

e State x(t) = (q(t),q(t)) is described by:
— position ¢(t) € R
—velocity ¢(t) € R

e The controls u(t) is the force we apply on the mass point

e The system dynamics is:

G(t) = u(t)/m



1D Mass

1 Given current q,, what control u, to get closer to desired position q*?
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1D Mass: Proportional Control

1 Given current q,, what control u, to get closer to desired position q*?

1 Consider an applied force that is an input proportional to the “error”:
(difference here is that u is a force and not a velocity)

u= K, (q" —q)

AW

— N

|
|
q*

1 You can picture a spring attached to q¥* that pulls the mass towards it. What
happens in the absence of friction ?
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1D Mass: Closed-loop Dynamics

mq=u=K, (q" —q)

q=q(t) is a function of time, this is a second order differential eq.

e Solution: assume ¢(t) = a + be*!
(an “non-imaginary” alternative would be ¢(t) = a + b e~ cos(wt))

mbw? e =K, ¢ —K,a— K, be"
(mbw? +K,b) e =K, (¢ —a)
= (mbw* +K,b)=0A (¢*—a)=0

= w=1i/K,/m

Q(t) _ q* _|_bei\/Kp/m t

This is an oscillation around ¢* with amplitude b = ¢(0) — ¢* and

frequency /K, /m/! 12



1D Mass: Closed-loop Dynamics

What’s the effect?
mq=u=1K, (¢" —q)
Q(t) _ q* _|_b€i\/Kp/mt

This is an oscillation around ¢* with amplitude b = ¢(0) — ¢* and

frequency /K, /m/!

1




1D Mass: Damping forces

Can we shape the dynamics further?

“Pull less, when we're heading the right direction already.”
‘Damp the system:”

Olive Oil Honey
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1D Mass: Damping forces

Olive Qil Honey

Can we shape the dynamics further?

“Pull less, when we're heading the right direction already:” = ~Hi
‘Damp the system.”

u=Kpq" —q)+ Ka(q" —q)

¢* is a desired goal velocity
For simplicity we set ¢* = 0 in the following.

—1im — I >
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1D Mass: Damping forces

What is the effect? mi=u=K,(q¢" —q)+ K0 —q)

e Solution: again assume ¢(t) = a + be*"

mbw? e =K, ¢* —K,a—K,be" —Kybwe

(mbw? + Kgbw+ K, b) e =K, (¢* —a)

= mw' +Kgw+K,) =0 A (¢ —a)=0
K.+ /K2 dmK,

2m
gty =q* +be”’

= W=

The term —2< inwisreal « exponential decay (damping)

2m,
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1D Mass: Damping forces

What’s the effect?

—Kqt\/K3—4mK,

2m

A= +be !, w=

e Effect of the second term /K3 — 4mK,/2m in w:

K7 < 4mK, = w hasimaginary part

oscillating with frequency /K, /m — K7 /4m?
q(t) = q* + beKa/2m t giV/Ky/m—KG/4m? 1

K2 >4mK, = wreal
strongly damped

K3 =4mK, = second term zero
only exponential decay
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1D Mass: Concept of damping ratio

Alternative Parameterisation

Instead of specifying the coefficients Kp and Kd

e “wave length” A = - = Klp/m , K, =m/\?
e damping ratio ¢ = EK =l K, =2mE/A

¢ > 1: over-damped
¢ = 1: critically dampled
¢ < 1: oscillatory-damped

Q(t) _ q* 4 be—&/)\ t eiwo\/l—SQ t
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Adding another term to this Spring-damper system

uw=K,(¢" —q)+ Kq(¢" —q)|+ K; (g"(s) —q(s)) ds

s=0
e PID control
— Proportional Control (“Position Control”)
foc Kp(q™ = q)

— Derivative Control (“Damping”)
o Kald" i) 0" — 0 damping

— Integral Control (“Steady State Error”)
fox K; f;zo(q*(S) —q(s)) ds




1D Mass: Summary

J Dynamics of a 1D mass-spring-damper system, a spring and a damper added to a
point mass, i.e. spring and damping forces (aka PD controller)
J Resultant force acting on the system in a linear ‘control law’

T (q.q) —u=Ky(q¢* - q) + Kalq* — q)
(linear in the dynamic system state x = (q, q))

J With such simple linear rules, we can modulate the dynamic response of the system

by tuning the ‘strength’ of spring and damper (i.e., PD gains in the PD ‘control law’)

J *trade-off: there is no optimality criterion supporting such rules and the resulting
motions (hence, we may be able to do better)
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