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Types of Control Objectives
The same control structure (e.g. PD control) can be applied to many 
objectives:

❏ motion control

❏ force control

❏ hybrid motion-force control

❏ impedance control
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Consider the types of control for the following 
tasks:
❏ Shaking hands with a human
❏ Erasing a whiteboard
❏ Spray painting
❏ Back massage
❏ Pushing an object across the floor with a mobile robot
❏ Opening a refrigerator door
❏ Inserting a peg in a hole
❏ Polishing with a polishing wheel
❏ Folding laundry
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Control System Block Diagram
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A Simplified Block Diagram
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Design: What do we Need to Deduce from Dynamics Models?

❏ Long-term dynamic behaviour

❏ Stability: Will the dynamics converge? Will it come to rest?

❏ Transient Response: How much will the state fluctuate in response to perturbations?

❏ Given a certain family of control strategies, can this system be stabilized?

❏ Global Properties

❏ Given nonlinearities, what kinds of phase space trajectories are possible?

❏ What is the local structure along the various paths?
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For motion control,

 reference:  𝜃𝜃d(t)
      actual:  𝜃𝜃(t)
       error:  𝜃𝜃e(t) = 𝜃𝜃d(t) − 𝜃𝜃(t)

Unit step error response:
     𝜃𝜃e(t) starting from 𝜃𝜃e(0) = 1

Steady-state error response:  ess  

Transient error response:  
overshoot, settling time

Design Concept: “Dynamic Response”
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b

overshoot = |a/b| × 100% 



System dynamics, feedback controllers, and error response are often modeled by 
linear ordinary differential equations.

The simplest linear ODE exhibiting overshoot is second order, e.g.,

     or, if f = 0,  

Concept: Error Response

8

k and b depend on the control law



A more general pth-order linear ODE:
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nonhomogenous

homogeneous
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Defining a state vector x = (x1, x2, ..., xp), you can write the pth-order ODE as p 
first-order ODEs (a vector ODE). 

→



If Re(s) < 0 for all eigenvalues s of A, then the error dynamics are stable (the 
error decays to zero).

The eigenvalues are the roots of the characteristic equation

Necessary conditions for stability:  each 𝑎𝑎𝑖𝑖′ > 0.

These necessary conditions are also sufficient for first- and second-order 
systems.
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→



Discuss:

If the error dynamics characteristic equation is 
(s + 3 + 2j)(s + 3 − 2j)(s − 2) = 0, does the error converge to zero?

Note:  if x1 = error and x = (x1, x2, x3), then 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴, where

𝐴𝐴 =
0 1 0
0 0 1

26 −1 −4
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Discuss:

You can choose a control law to be a virtual spring, a virtual damper, a 
virtual spring plus damper, or nothing.  Which of these could stabilize an 
actuated pendulum with viscous friction to the upright configuration?  To a 
horizontal configuration?  To the downward configuration?  Describe the 
transient and steady-state error response for each.

⤿
g



First-order Error Dynamics
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standard first-order form



First-order Error Dynamics
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𝜃𝜃𝑒𝑒 0 = 1



Second-order Error Dynamics
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standard second-order form



Second-order Error Dynamics
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Overdamped behaviour
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solve for c1 and c2 using 
𝜃𝜃𝑒𝑒 0 = 1, 𝜃̇𝜃𝑒𝑒 0 = 0 



Critically damped behaviour
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Underdamped behaviour
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cos−1(𝜍𝜍)
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When controlling a robot joint, what do b, k, and 𝔪𝔪 usually correspond to?

How do you change 𝔪𝔪 to decrease settling time?  k, b?

How do you change 𝔪𝔪 to decrease overshoot? k, b?



Back to the PID controller

Let error be                        , PID controller in continuous time

Recall, elements of the PID:
1. P: proportional control, control effort is linearly proportional to the system 

error;
2. I : integral control, control effort is linearly proportional to the integral of 

error over a period of time;
3. D: derivative control, control effort is linearly proportional to the rate of 

change of error, which gives a sharp response to a sudden change of signals.
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Focusing on the PD control components
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Effects of PID gains

❏ kd term predicts system behaviour in one tick, which gives a control effort with the anticipation of the 

change during the next sampling time.

❏ In theory, given any kp gain, there is always a kd gain that can ensure critical damping of the response. 

However, due to the noise and delay of velocity, kd cannot to be too large otherwise noise in amplified. 

Therefore, kp gain can’t be too large either.
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Parameter Rise time Overshoot Settling time
Steady-state 

error
Stability

kp Decrease Increase Small change Decrease Degrade

ki Decrease Increase Increase Eliminate Degrade

kd Slightly increase Decrease Decrease No effect
Improve if velocity signal is 
good (not noisy, little delay)



Effects of gains
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Examples: Response for Different Target Paths

Simulation of PD control, tracking a sawtooth signal.

Low PD gain

No integral

kp=0.4;

ki=0.0;

kd=0.01;
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Examples: Response for Different Target Paths

Simulation of PD control, tracking a sawtooth signal.

High PD gain

No integral

kp=1.0;

ki=0.0;

kd=0.01;
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Examples: Response for Different Target Paths

Simulation of PD control, tracking a sawtooth signal.

High PD gain

With integral

kp=1.0;

ki=2.0;

kd=0.005;
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Examples: Response for Different Target Paths

Simulation of PD control, tracking a sawtooth signal.

High PD gain

With integral

kp=0.6;

ki=2.0;

kd=0.01;

Empirically tuned gains.
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Examples: Response for Different Target Paths

Simulation of PD control, tracking a sinusoidal signal.

High PD gain

With integral

kp=0.6;

ki=2.0;

kd=0.01;

Overshooting problem
caused by integral 32



Remark about Digital Implementation

Controls are often implemented in computer-based systems or by digital 
computation, e.g. micro-controllers, DSP, FPGA etc. 
A digital control system only ‘sees’ the sensory information and command 
the control action at times, at a constant time interval.

The continuous PID control law

can be rewritten with appropriately adjusted coefficients as:
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Using backward Euler method:

PID in continuous time

PID in discrete time

Digital PID controller
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(usually, derivative terms are filtered)

       note, in kth control loop, range of i is: 



For a single joint with the joint velocity as the control:

• Open-loop (feedforward) control:

• Closed-loop (feedback) control:  𝜃̇𝜃 𝑡𝑡 = 𝑓𝑓(𝜃𝜃𝑑𝑑 𝑡𝑡 ,𝜃𝜃 𝑡𝑡 )

• FF + Proportional-Integral (PI) FB control:

Concept: Feedback vs. Feedforward
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•  reduces to FF control if Kp, Ki = 0
•  if no FF term:  P control when Ki = 0, I control when Kp = 0

,  Kp, Ki ≥ 0
Discuss: 

What is the point
of FF control in
this control law?



Block Diagram: Feedback and Feedforward
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