

Advanced Robotics Dynamics II

Dynamics of Open Chains (Ref: Ch. 8 of K.M. Lynch & F.C. Park, *Modern Robotics*)

Sethu Vijayakumar School of Informatics University of Edinburgh

Recap

- ☐ We will discuss the following three topics:
 - ☐ 1D point mass
 - A 'general' dynamic robot (=> Dynamics II)
 - ☐ Joint space control
- $oldsymbol{\Box}$ For now we assume that the robot is fully actuated and that ${f v_q}=\dot{f q}$

(ie velocity and configuration space have the same dimension)

☐ We also assume motors are equipped with accurate **position** sensors (ie we know **q** accurately)

Forward and inverse dynamics

- As for geometry and kinematics, we are interested in two formulations of the dynamics of a system
 - $oldsymbol{\Box}$ Forward dynamics: Given $oldsymbol{q}$, $oldsymbol{v}_{oldsymbol{q}}$ and $oldsymbol{\mathcal{T}}$, compute joint accelerations $oldsymbol{\dot{V}}_{oldsymbol{q}}$ Useful for simulation

 $oldsymbol{\square}$ Inverse dynamics: Given $oldsymbol{q}$, $oldsymbol{v_q}$ and $oldsymbol{V_q}$, compute torque commands $oldsymbol{\mathcal{T}}$ Useful for *control*

Two approaches to dynamics

- ☐ Lagrangian dynamics
 - ☐ Intuitive variational formulation (principles you may already be familiar with)
 - ☐ Equations get messy quite quickly
- ☐ Newton-Euler dynamics
 - ☐ Not so intuitive, we'll focus mainly on the ideas (detailed derivations in all standard texts)
 - ☐ Newton-Euler is practically used in robotics because efficient recursive algorithms can be derived from the formulation

Lagrangian dynamics

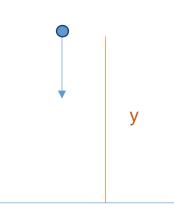
- ☐ In classic mechanics, as you would have seen in secondary school, we have the core concept of mechanical energy
- ☐ Example: free fall of a point mass
 - ☐ Kinetic Energy T

$$T=\frac{1}{2}m\dot{y}^2$$

Potential Energy U (gravitational)

$$U = mgy$$

☐ If only *conservative* forces are applied, total energy E = T + U is constant



Lagrangian dynamics -intuitions

☐ Let's write

$$L(y,\dot{y}) = T - U = rac{1}{2}m\dot{y}^2 - mgy$$

■ We can verify that

$$rac{d}{dt}\left(rac{\partial L}{\partial \dot{y}}
ight) = rac{\partial L}{\partial y}$$

$$rac{\partial L}{\partial \dot{y}} = m \dot{y} \ rac{d}{dt} \left(rac{\partial L}{\partial \dot{y}}
ight) = m \ddot{y} \$$

$$\frac{\partial L}{\partial y} = -m_{
m S}$$

- \Box Which brings us back to the very familiar Newton's law F = ma.
- ☐ L is called the Lagrangian, and concisely captures the physics

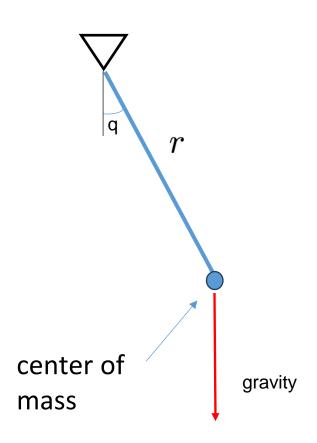
Lagrangian mechanics

☐ In the general case, it can be proven that this equation equates to the torques

$$rac{d}{dt}\left(rac{\partial L(\mathbf{q},\dot{\mathbf{q}})}{\partial \dot{y}}
ight) - rac{\partial L(\mathbf{q},\dot{\mathbf{q}})}{\partial y} = au$$

☐ We won't prove this (all variational calculus and mechanics books will cover this - if you were interested), just show it on another example

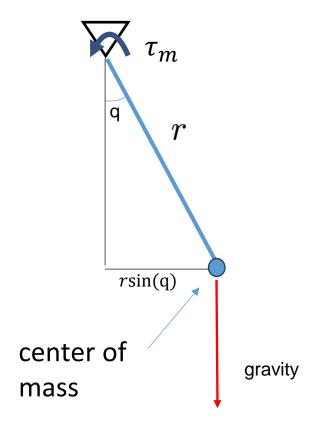
Example: Equation of motion of a 1-DOF robot arm



mass of pendulum: m

moment of inertia (about pivot point): I_p

Example: Equation of motion of a 1-DOF robot arm



mass of pendulum: $\,m\,$

moment of inertia (about pivot point): I_p

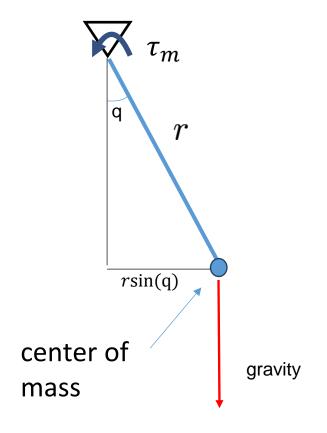
Newton's second law:

$$I_{p}\overset{\cdot \cdot }{\mathbf{q}}=\sum_{i}\tau _{i}$$

$$\tau_g = -rmg\sin(q)$$
 Gravity torque

 au_m Motor torque

Example: Equation of motion of a 1-DOF robot arm



mass of pendulum: $\,m\,$

moment of inertia (about pivot point): I_p

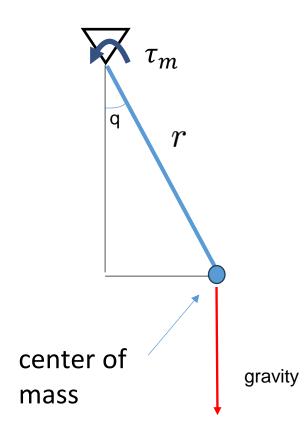
Newton's second law:

$$I_{p}\overset{\cdot \cdot }{\mathbf{q}}=\sum_{i}\tau _{i}$$

$$\tau_g = -rmg\sin(q)$$
 Gravity torque

 au_m Motor torque

Lagrangian computation



$$U(q) = mgh$$
, where $h = r(1 - \cos(q))$

$$T(q) = \frac{1}{2} I_p \dot{q}^2$$

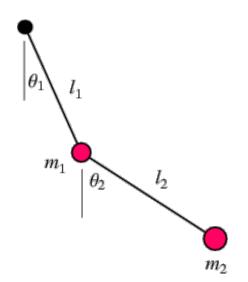
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) = I_p \ddot{q} \qquad \frac{\partial L}{\partial q} = \frac{\partial}{\partial q} (mgr(1 - cos(q))) = -mgrsin(q)$$

$$au_m = rac{d}{dt} \left(rac{\partial L(\mathbf{q}, \dot{\mathbf{q}})}{\partial \dot{q}}
ight) - rac{\partial L(\mathbf{q}, \dot{\mathbf{q}})}{\partial q}$$

$$\tau_m = I_p \ddot{\mathbf{q}} + rmg \sin(\mathbf{q})$$

Why use the Lagrangian?

- Newton's law equations consider each rigid body *individually*. The problem is that we will have to also consider constraint forces (e.g. double pendulum equations below source: wolfram)
- Lagrangian formulations nicely incorporates all of these considerations
- Things get rapidly complicated when we write out complete equations of motion. The differential equations for the double pendulum system are respectively:

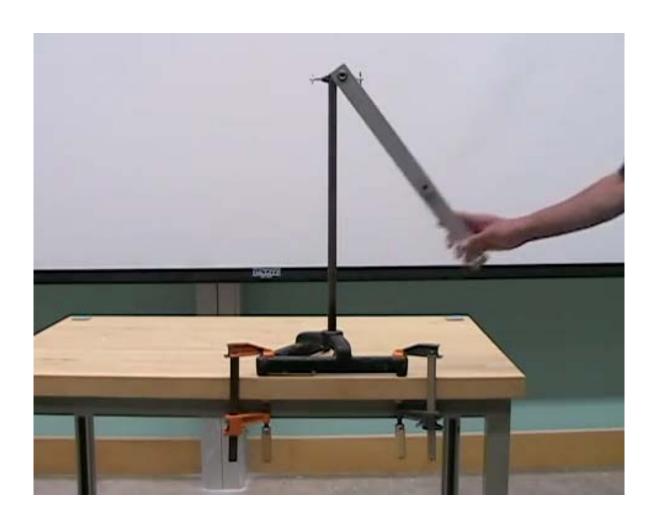


$$(m_1 + m_2) L_1^2 \ddot{\theta}_1 + m_2 L_1 L_2 \cos(\theta_1 - \theta_2) \ddot{\theta}_2 +$$

$$m_2 L_1 L_2 \sin(\theta_1 - \theta_2) \dot{\theta}_2^2 + g(m_1 + m_2) L_1 \sin(\theta_1) = 0$$

$$m_2 L_1 L_2 \cos(\theta_1 - \theta_2) \ddot{\theta}_1 + m_2 L_2^2 \ddot{\theta}_2 + -m_2 L_1 L_2 \sin(\theta_1 - \theta_2) \dot{\theta}_1^2 + g m_2 L_2 \sin(\theta_2) = 0$$

Indeed the behaviour is ... chaotic



Canonical form for articulated rigid bodies

■ We can regroup terms as follows

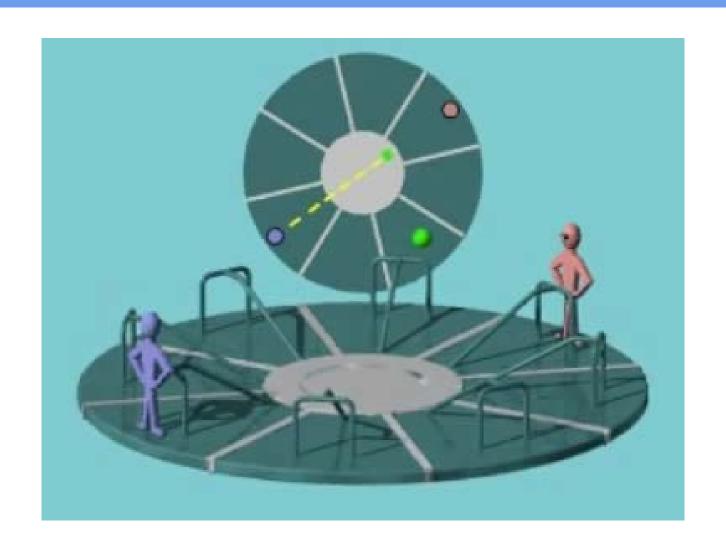
$$\begin{array}{c|c} \mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}}+\mathbf{B}\left(\mathbf{q}\right)\left[\dot{\mathbf{q}}\dot{\mathbf{q}}\right]+\mathbf{C}\left(\mathbf{q}\right)\left[\dot{\mathbf{q}}^{2}\right]+\mathbf{G}\left(\mathbf{q}\right)=\tau \\ \\ \text{Linertia Matrix} & \text{Centrifugal Matrix} & \text{External Forces} \\ \\ \text{Coriolis Matrix} & \text{Gravity Vector} \end{array}$$

$$[\dot{\mathbf{q}}\dot{\mathbf{q}}] = \begin{bmatrix} \dot{q}_1\dot{q}_2 & \dot{q}_1\dot{q}_3 & \dots & \dot{q}_{n-1}\dot{q}_n \end{bmatrix}^T$$

$$[\dot{\mathbf{q}}^2] = \begin{bmatrix} \dot{q}_1^2 & \dot{q}_2^2 & \dots & \dot{q}_n^2 \end{bmatrix}^T$$

M,B,C,G are only configuration dependent

What are Coriolis forces?



Other representations in the literature

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{G}(\mathbf{q}) = \tau$$

C is a vector with Coriolis plus centrifugal terms

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) = \tau$$

C is a matrix with Coriolis plus centrifugal terms

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{h}(\mathbf{q}, \dot{\mathbf{q}}) = \tau$$

More about the inertia matrix M(q):

☐ M defines the Kinetic energy of our robot:

$$T(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \dot{\mathbf{q}}^T \mathbf{M}(\mathbf{q}) \dot{\mathbf{q}}$$

 \square Because $T \ge 0, \forall (\mathbf{q}, \dot{\mathbf{q}})$, M is?

More about the inertia matrix M(q):

☐ M defines the Kinetic energy of our robot:

$$T(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} \dot{\mathbf{q}}^T \mathbf{M}(\mathbf{q}) \dot{\mathbf{q}}$$

 \Box Because $T \geq 0, \forall (\mathbf{q}, \dot{\mathbf{q}})$, **M** is positive-definite

As such it is invertible:

$$\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}} + \mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right) + \mathbf{G}\left(\mathbf{q}\right) = \tau \quad \Longrightarrow \quad \ddot{\mathbf{q}} = \mathbf{M}\left(\mathbf{q}\right)^{-1}\left(-\mathbf{C}\left(\mathbf{q},\dot{\mathbf{q}}\right) - \mathbf{G}\left(\mathbf{q}\right) + \tau\right)$$

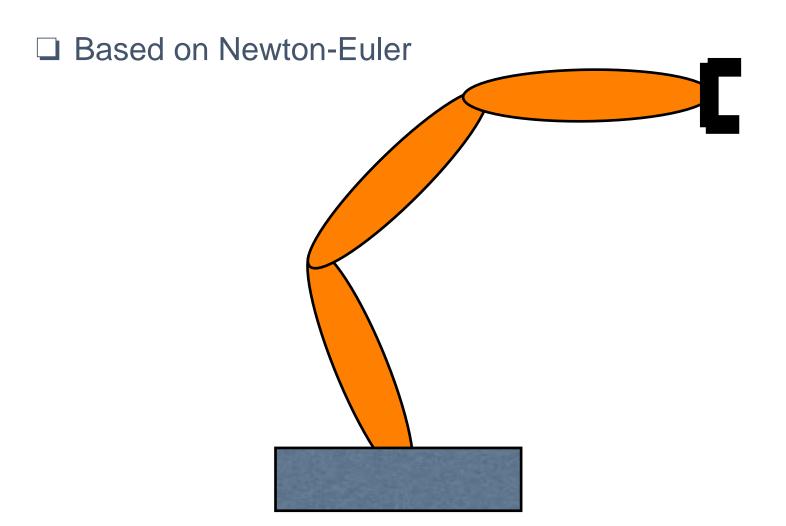
This gives us the equations for forward and inverse dynamics

$$\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}} + \mathbf{C}\left(\mathbf{q}, \dot{\mathbf{q}}\right) + \mathbf{G}\left(\mathbf{q}\right) = \tau$$

Inverse Dynamics equation = control

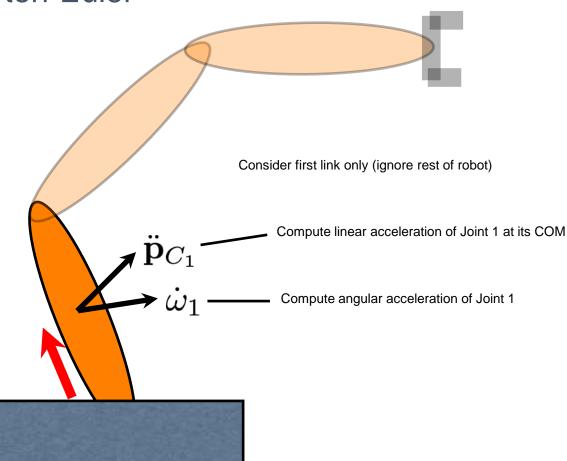
$$\ddot{\mathbf{q}} = \mathbf{M} \left(\mathbf{q} \right)^{-1} \left(-\mathbf{C} \left(\mathbf{q}, \dot{\mathbf{q}} \right) - \mathbf{G} \left(\mathbf{q} \right) + \tau \right)$$

Forward Dynamics equation = simulation

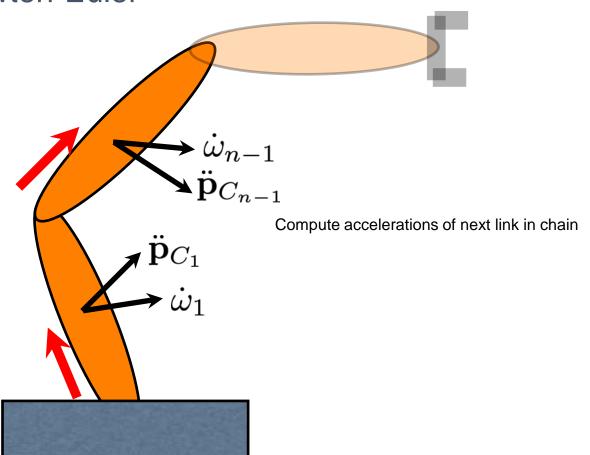


■ Based on Newton-Euler

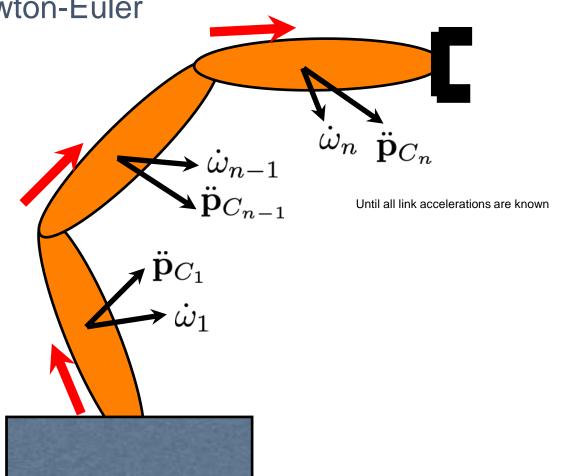
 \mathbf{p}_{CI} denotes the coordinates of the first link $C_{I_{j}}$ more on this next week



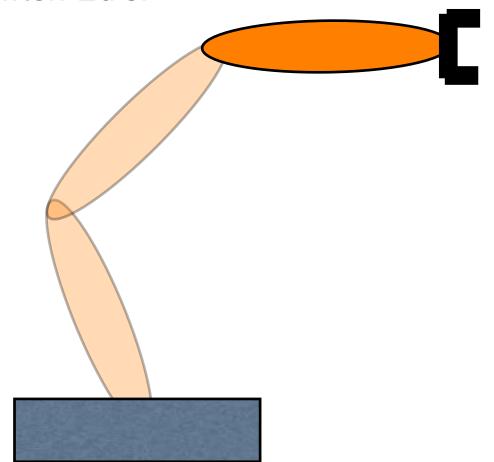
■ Based on Newton-Euler



■ Based on Newton-Euler

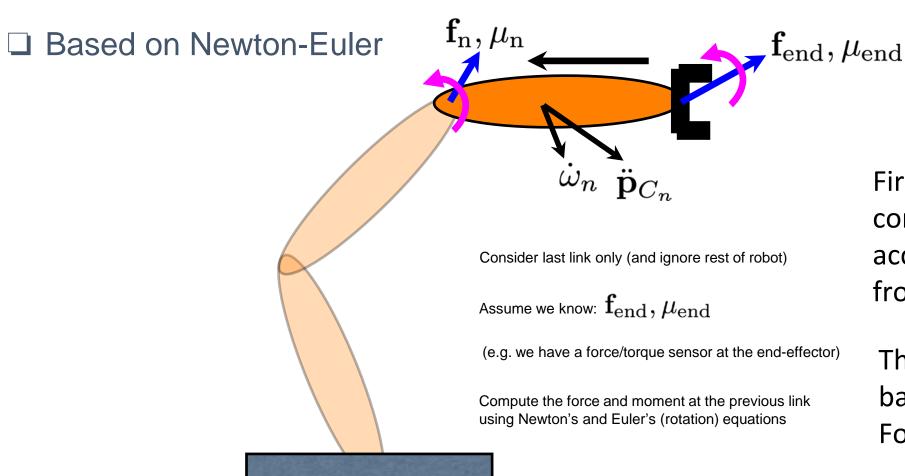


■ Based on Newton-Euler



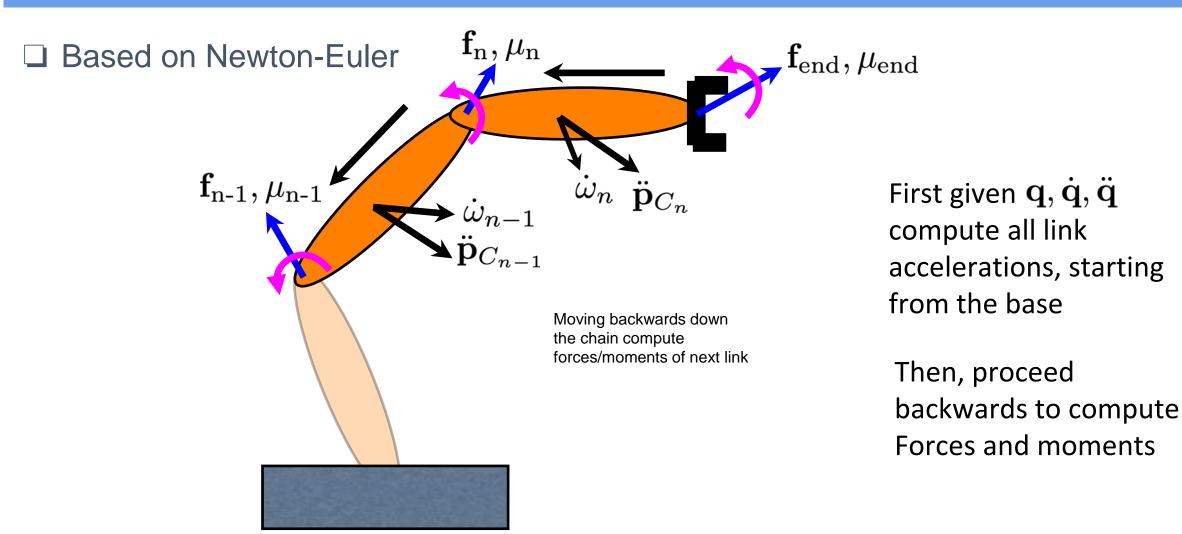
First given $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}$ compute all link accelerations, starting from the base

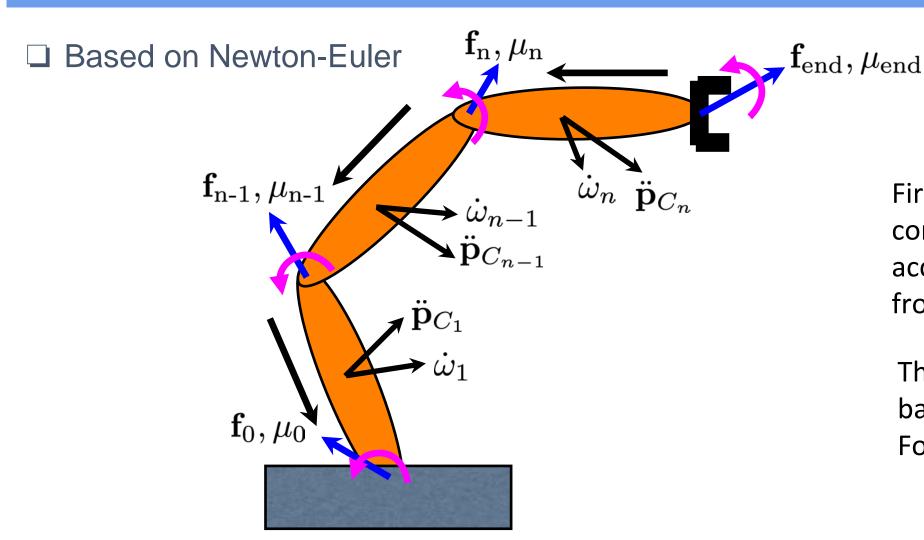
Then, proceed backwards to compute Forces and moments



First given $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}$ compute all link accelerations, starting from the base

Then, proceed backwards to compute Forces and moments





First given $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}$ compute all link accelerations, starting from the base

Then, proceed backwards to compute Forces and moments

A recursive algorithm for articulated robots

☐ The Recursive Newton-Euler Algorithm (RNEA) gives us an iterative way to compute Inverse Dynamics:

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{G}(\mathbf{q}) = \tau$$

$$RNEA(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \tau$$

□ Without requiring to work out the mass matrix. However we still need M for forward dynamics

$$\ddot{\mathbf{q}} = \mathbf{M} \left(\mathbf{q} \right)^{-1} \left(-\mathbf{C} \left(\mathbf{q}, \dot{\mathbf{q}} \right) - \mathbf{G} \left(\mathbf{q} \right) + \tau \right)$$

Can RNEA be used to compute the mass matrix?

☐ A trick is to compute M column by column by setting:

$$\mathbf{g} = 0 \ \dot{\mathbf{q}} = 0 \ \ddot{q}_i = 1 \ \ddot{q}_j = 0, \forall j \neq i$$

- ☐ In such a case RNEA return the i-th column of M
- ☐ As a result, computing inverse dynamics is faster than forward dynamics:

- $O(n^2)$ for computing direct dynamics,
- \bullet O(n) for computing inverse dynamics.

How do we control this? (transition slide)

General Robot System Dynamics

- State $x = (q, \dot{q}) \in \mathbb{R}^{2n}$
 - joint positions $q \in \mathbb{R}^n$
 - joint velocities $\dot{q} \in \mathbb{R}^n$
- Controls $u \in \mathbb{R}^n$ are the *torques* generated in each motor.
- The system dynamics are:

$$M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) = u$$

 $M(q) \in \mathbb{R}^{n \times n}$ is positive definite intertia matrix (can be inverted \rightarrow forward simulation of dynamics)

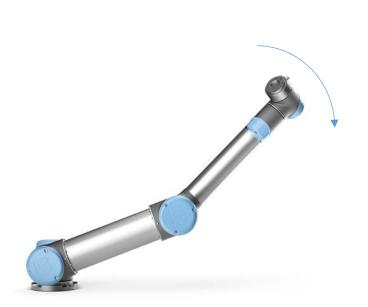
 $C(q,\dot{q})\in\mathbb{R}^n$ are the centripetal and coriolis forces

 $G(q) \in \mathbb{R}^n$ are the gravitational forces

u are the joint torques

Computing M(q) and F(q, dq)

■ More compact form as:



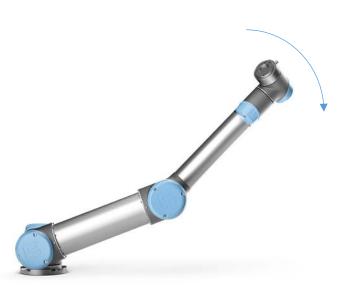
$$M(q) \ddot{q} + F(q, \dot{q}) = u$$

There exist efficient algorithms to compute M and F. This is implemented in Pinocchio

Implications for (multi-body) dynamics

• If we know the desired \ddot{q}^* for each joint, the eqn.

$$M(q) \ddot{q}^* + F(q, \dot{q}) = u^*$$
 gives the desired torques.



Joint Space control

• Where could we get the desired \ddot{q}^* from? Assume we have a nice smooth **reference trajectory** $q_{0:T}^{\text{ref}}$ (generated with some motion profile or alike), we can at each t read off the desired acceleration as

Open loop
$$\ddot{\ddot{q}_t^{\text{ref}}} := \frac{1}{\tau}[(q_{t+1} - q_t)/\tau - (q_t - q_{t-1})/\tau] = (q_{t-1} + q_{t+1} - 2q_t)/\tau^2$$

What if we directly use desired reference acceleration?

Tiny errors in acceleration will **accumulate** greatly over time and this makes this an **unstable** approach!

Joint Space control

Choose a desired acceleration \ddot{q}_t^* that implies a *PD-like behavior* around the reference trajectory!

$$\ddot{q}_t^* = \ddot{q}_t^{\text{ref}} + K_p(q_t^{\text{ref}} - q_t) + K_d(\dot{q}_t^{\text{ref}} - \dot{q}_t)$$

$$\label{eq:matrix} M(q) \ \ddot{q}^* + F(q, \dot{q}) = u^*$$

This is a standard and convenient way of tracking a reference trajectory when the **robot dynamics are known**: all the joints will behave exactly like a 1D point mass around the reference trajectory!

Summary

- We covered the following three topics:
 - 1D point mass
 - A 'general' dynamic robot (→ Dynamics II)
 - Joint space control method $\ddot{q}_t^* = \ddot{q}_t^{\text{ref}} + K_p(q_t^{\text{ref}} q_t) + K_d(\dot{q}_t^{\text{ref}} \dot{q}_t)$

$$\ddot{q}_t^* = \ddot{q}_t^{\text{ref}} + K_p(q_t^{\text{ref}} - q_t) + K_d(\dot{q}_t^{\text{ref}} - \dot{q}_t)$$

$$M(q) \ddot{q}^* + F(q, \dot{q}) = u^*$$