\~. THE UNIVERSITY of EDINBURGH

%)- informatics

7, <

Advanced Robotics

Dynamics 11

Dynamics of Open Chains

(Ref: Ch. 8 of K.M. Lynch & F.C. Park, Modern Robotics)
Sethu Vijayakumar

School of Informatics

University of Edinburgh

1 We will discuss the following three topics:

1D point mass

A ‘general’ dynamic robot (=> Dynamics 1)

1 Joint space control

J For now we assume that the robot is fully actuated and that Vg = q

(ie velocity and configuration space have the same dimension)

1 We also assume motors are equipped with accurate position sensors (ie we know q
accurately)

Forward and inverse dynamics

J As for geometry and kinematics, we are interested in two formulations of the
dynamics of a system

1 Forward dynamics: Given q, v, and 7, compute joint accelerations V'q

Useful for simulation

1 Inverse dynamics: Given q, v, and \fq, compute torque commands T

Useful for control

13

Two approaches to dynamics

1 Lagrangian dynamics
1 Intuitive variational formulation (principles you may already be familiar with)

1 Equations get messy quite quickly

1 Newton-Euler dynamics

1 Not so intuitive, we’ll focus mainly on the ideas (detailed derivations in all standard texts)

1 Newton-Euler is practically used in robotics because efficient recursive algorithms can be derived
from the formulation

14

Lagrangian dynamics

4 In classic mechanics, as you would have seen in secondary school, we
have the core concept of mechanical energy

1 Example: free fall of a point mass

1
T = Em'g:') I

1 Kinetic Energy T

1 Potential Energy U (gravitational)

U=mgy

1 If only conservative forces are applied, total energy E =T + U is constant

15

Lagrangian dynamics —intuitions

1 Let’s write Ly, y) =T -U = Emgz — mgy
1 We can verify that d (3_‘3) _ oL
dt \ Oy Jy
oL _
ag Y
4 (3_L) i oL _ _
dt ay - my 8y = —mg

d Which brings us back to the very familiar Newton’s law F = ma.

1 L is called the Lagrangian, and concisely captures the physics
16

Lagrangian mechanics

1 In the general case, it can be proven that this equation equates to the
torques

JT

a (3L(q, fl)) O0L(q,q)
dt o4, oy

1 We won’t prove this (all variational calculus and mechanics books will cover this -
if you were interested), just show it on another example

17

Example: Equation of motion of a i-DOF robot arm

center of
mass

/

mass of pendulum: ™M

moment of inertia
(about pivot point): P

gravity

18

Example: Equation of motion of a i-DOF robot arm

rsin(q)

center of
mass

gravity

Newton’s second law :

lLq = Z_Ti

L
7, = —rmgsin(q)
Tm

mass of pendulum: M

moment of inertia
(about pivot point): P

Gravity torque

Motor torque

19

Example: Equation of motion of a i-DOF robot arm

rsin(q)

center of
mass

gravity

Newton’s second law :

lLq = Z_Ti

L
7, = —rmgsin(q)
Tm

mass of pendulum: M

moment of inertia
(about pivot point): P

Gravity torque

Motor torque

20

Lagrangian computation

U(q) = mgh, where h =r(1— cos(q))

1.
W T T(q) =) pq2
q
__4d (GL(q,Q)) _ 0L(q,9)
/ ™ dt 04 9q
center of gravity .
mass Ty = Ipq + rmgSiH(Q)

21

Why use the Lagrangian?

] Newton’s law equations consider each rigid body individually. The problem is that we will have to
also consider constraint forces (e.g. double pendulum equations below - source: wolfram)

| Lagrangian formulations nicely incorporates all of these considerations

1 Things get rapidly complicated when we write out complete equations of motion. The differential
equations for the double pendulum system are respectively:

(m1 -+ mg) L%Ql + mo L1 Locos (91 — 92) ég—l—
mo L1 Losin (91 — 92) 9% + g (m1 -+ mg) Lqsin (91) =0

mo L1 Locos (91 — 92) él + mngég—l—
—meo L1 Losin (91 — 92) 9% + gmo Losin (92) =0

22

Indeed the behaviour is ... chaotic

Canonical form for articulated rigid bodies

1 We can regroup terms as follows

M (@) + B (a) [44] + C (@) [4°] + G (a) = 7

/ [|

Inertia Matrix

Centrifugal Matrix External Forces
Coriolis Matrix Gravity Vector
adq)=[qde Gids - Gno1dn |
P =[@ @ ... @]

M,B,C,G are only configuration dependent 24

What are Coriolis forces?

25

Other representations in the literature

M(q)d+C(q,q)+G(q) =7

Cis a vector with Coriolis plus centrifugal terms

M(q)4+C(q,a)a+G(a) =T

C is a matrix with Coriolis plus centrifugal terms

M(q)a+h(q,q) =71

26

More about the inertia matrix M(q):

1 M defines the Kinetic energy of our robot:

1

T(q,q) = 5 1" M(q)q

1 Because T >0,V¥(q,q), Mis ?

27

More about the inertia matrix M(q):

1 M defines the Kinetic energy of our robot:

1

T(q,q) = 5 1" M(q)q

1 Because T > 0,VY(q,q), M is positive-definite

1 As such it is invertible:
M(q)§+C(qq) +G(@) =7 =—=> d§=M(a) " (-C(q,q) -G (q)+7)

28

This gives us the equations for forward and inverse dynamics

Inverse Dynamics equation = control

Forward Dynamics equation = simulation

29

A recursive algorithm for articulated robots: intuitions

1 Based on Newton-Euler

First given 9,4, q
compute all link

accelerations, starting
from the base

30

A recursive algorithm for articulated robots: intuitions

=

1 Based on Newton-Euler

First given q,q, q
Consider first link only (ignore rest of robot) com p ute a I I | |] k

accelerations, starting
_— Compute linear acceleration of Joint 1 at its COM from the base

Pc; denotes the
coordinates of the
first link C; more
on this next week

Pc,
w1

Compute angular acceleration of Joint 1

31

A recursive algorithm for articulated robots: intuitions

1 Based on Newton-Euler

=

First given 9,4, q
compute all link

accelerations, starting
from the base

c'z}'n—l
pcn—l

Compute accelerations of next link in chain

32

32

A recursive algorithm for articulated robots: intuitions

1 Based on Newton-Euler

First given 9,4, q
compute all link

accelerations, starting
from the base

Wn Pe,

Wn—1

.e
pO Until all link accelerations are known
n—1

33

A recursive algorithm for articulated robots: intuitions

1 Based on Newton-Euler

First given 9,4, q
compute all link

accelerations, starting
from the base

Then, proceed
backwards to compute
Forces and moments

34

A recursive algorithm for articulated robots: intuitions

£, tn

1 Based on Newton-Euler ,

Wn Pe,

Consider last link only (and ignore rest of robot)

Assume we know: Lend, Hlend

(e.g. we have a force/torgue sensor at the end-effector)

Compute the force and moment at the previous link
using Newton’s and Euler’s (rotation) equations

fend sy lend

First given 9,4, q
compute all link
accelerations, starting
from the base

Then, proceed
backwards to compute
Forces and moments

35

A recursive algorithm for articulated robots: intuitions

fn > Hn fend y lend

1 Based on Newton-Euler ,

First given q, q,q
¢ compute all link
PcC,_1 accelerations, starting

from the base

fn—l y n-1 d')n 9
Wn—1 PO.,,,

Moving backwards down
the chain compute
forces/moments of next link

Then, proceed
backwards to compute
Forces and moments

36

A recursive algorithm for articulated robots: intuitions

1 Based on Newton-Euler fn, tin fend, Hend

fo1, fin-1 . Un T First given q, q, q
compute all link
accelerations, starting
from the base

Then, proceed
backwards to compute

f
05 M0 Forces and moments

37

37

A recursive algorithm for articulated robots

1 The Recursive Newton-Euler Algorithm (RNEA) gives us an iterative way to
compute Inverse Dynamics:

M(q)q+C(q,q)+G(q) =7

RNEA(q,q,q) =T

1 Without requiring to work out the mass matrix. However we still need M for
forward dynamics

d=M(a) " (-C(q,q) — G(q) +7)

38

Can RNEA be used to compute the mass matrix?

1 Atrick is to compute M column by column by setting:

g=0q§=0 G =1 4 =0Vj#i

1 In such a case RNEA return the I-th column of M

1 As a result, computing inverse dynamics is faster than forward dynamics:

o O(n?) for computing direct dynamics,
e ((n) for computing inverse dynamics.

39

How do we control this ? (transition slide)

40

General Robot System Dynamics

e State x = (¢.¢) € R*"
— joint positions ¢ € R"
— joint velocities ¢ € R"

e Controls u € R™ are the torques generated in each motor.

e The system dynamics are:
M(q) G+ C(q,q) G+ G(q) =u

M(q) € R™*™ s positive definite intertia matrix
(can be inverted — forward simulation of dynamics)

C'(q,q) € R™ are the centripetal and coriolis forces
G(q) € R” are the gravitational forces
u are the joint torques

41

Computing M(q) and F(q, dq)

1 More compact form as:

M(q) §+ F(q,q) =u

There exist efficient algorithms to compute M and F.

This is implemented in Pinocchio
42

Implications for (multi-body) dynamics

e |f we know the desired ¢* for each joint, the eqgn.
M(q) ¢* + F(q,q) = u* gives the desired torques.

43

Joint Space control

e Where could we get the desired ¢* from?
Assume we have a nice smooth reference trajectory ¢/°'. (generated

with some motion profile or alike), we can at each ¢ read off the desired
acceleration as

\ 1
Open loop q-gef S
-

(g1 —ai) /7 — (@0 — 1) /7)) = (Ge1 + qug1 — QQt)/T2

What if we directly use desired reference acceleration?

Tiny errors in acceleration will accumulate greatly over time and this
makes this an unstable approach!

44

Joint Space control

Choose a desired acceleration ¢; that implies a PD-like behavior
around the reference trajectory!

G = G+ Kp(q® — a1) + Ka(d®" — g¢)

!

M(q) " + F(q,q) = u”

This is a standard and convenient way of tracking a
reference trajectory when the robot dynamics are
known: all the joints will behave exactly like a 1D point
mass around the reference trajectory!

45

* We covered the following three topics:

« 1D point mass
« A‘general dynamic robot (= Dynamics Il)

» Joint space control method = G = @ + K, (¢* — ¢:) + Ka(¢® — d1)

J

M(q) ¢ + F(q,q) = u”*

46

	Advanced Robotics
	Slide Number 2
	Forward and inverse dynamics
	Two approaches to dynamics
	Lagrangian dynamics
	Lagrangian dynamics –intuitions
	Lagrangian mechanics
	Example: Equation of motion of a 1-DOF robot arm (pendulum)�
	Example: Equation of motion of a 1-DOF robot arm (pendulum)�
	Example: Equation of motion of a 1-DOF robot arm (pendulum)�
	Lagrangian computation
	Why use the Lagrangian?
	Indeed the behaviour is … chaotic
	Canonical form for articulated rigid bodies
	What are Coriolis forces?
	Other representations in the literature
	More about the inertia matrix M(q):�
	More about the inertia matrix M(q):�
	This gives us the equations for forward and inverse dynamics
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots: intuitions
	A recursive algorithm for articulated robots
	Can RNEA be used to compute the mass matrix?
	How do we control this ? (transition slide)
	Slide Number 41
	Computing M(q) and F(q, dq)
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46

