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These slides are adapted, with permission, from lecture notes of Andrea Del Prete.

See also Ch 11 of Lynch and Park, Modern Robotics.


https://andreadelprete.github.io/

Summary of rigid body motion

1 The general form for the dynamics equation of articulated robots is:
M(q)G+h(q,q) =7

J Assuming robot is fully actuated and that vq = ¢q

1 This describes dynamics in the configuration space

1 As with geometry / kinematics, we are often mainly interested in the
task space




d Inverse dynamics control in the configuration space

] Task—space inverse dynamics



Reminder of inverse dynamics

1 Given g, q and q , compute torque commands 7 that achieve desired
acceleration g%

1 Given a referenceq” (t) find7(t) such that resulting q(7(%)) followsq" (t)

1 We assume we can measure q and q
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Simpler control laws for manipulator

r = —Kaé — Kpe + g(a)

el
PD gravity torque

Even simpler is PID control:

T=—-Kq&— Kye + fg K;e(s)ds

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID



Inverse Dynamics control as optimisation problem

1 As for inverse kinematics, we can write a least square problem:

(7%,4") = argmin || — §“|”

Subject to T = Mq -+ h

1 The optimal solution to this is exactly the ID control law if we set

=4 -Ky(a—-q")-K,(g—¢q")

1 So there may be no real advantage here, but the more general framing is

useful for more complex problems
10



Least Square Problem (LSP) (reminder)

J LSP taxonomy:
1 An L, norm cost ||AX - b||?

1 Possibly linear inequality / equality constraints (Cx <=d ; D x = X)

1 LSPs are a sub-class of convex Quadratic Problems (QPs) which have:
1 Quadratic cost x"TH x + hTx , with H>=0

1 Possibly linear inequality / equality constraints (Cx <=d ; D x = Xx)

1 LSPs and QPs can be solved extremely fast with off-the-shelf software
=> compatible with real-time control loops (~ 1 KHz)
11



Main advantage of optimisation is constraints

1 e.qg., adding torque limits is much more straightforward:

(7%,4") = argmin || — §“|”

Subject to T = Mq -+ h
T <r<7T"
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Main advantage of optimisation is constraints

1 Assuming constant aceleration at each time step,
q(t + At) = q(t) + Atq
1 Joint velocities constraints:
(7%,4") = argmin || — §“|”

Subject to T = Mq —|— h
7T <7< Tt
q(t)” < q(t) + Atg < q(t)*
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Main advantage of optimisation is constraints

1 Likewise for joint limits:
1
q(t + At) = q(t) + Atq(t) §At2Atq

1 However, we need caution, as this can result in high accelerations
1 Incompatible with torque / current constraints
1 Leads to infeasible problems (i.e. no solutions may exist)

1 These issues are addressed in the research literature, but we will not discuss them further here
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Task space inverse dynamics (TSID)

1 Joint space ID control expects reference q’ (¢)

1 What if we only have reference end-effector trajectory x" (t) ?

1 Option 1: compute corresponding q' (¢) then apply ID control
1 Issue 1: this is the inverse geometry problem, non-linear problem with infinity of solutions
1 Issue 2: Tracking " () is sufficient but not necessary to track x" (t)

This means that perturbations that affect q"" (t) but not the Forward Geometry FG(Q)
are rejected

1 What might an option 2 be?
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Task space Inverse Dynamics: option 2

1 End-effector control. Feeback directly effector configuration

V=V = Kq(V = V") — Ky(x —x")
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Task space Inverse Dynamics: option 2

1 End-effector control. Feeback directly effector configuration

VE=V" — Kg(V - V") — K,(x —x")
1 Let’s differentiate V : Y = Jq
YV =J4q+Jq
1 As a result, desired acceleration should be
e d 5d T .
q‘ =J"(V’—-Jq)
Agalin, the torques are obtained straightforwardly as 7 = Mdd +h
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Option 2 is often preferred

+ Gains defined in Cartesian space
+ No pre-computations
+ Online specification of reference trajectory

- More complex controller

20



Generalising the notion of task

1 Not all tasks are just a matter of tracking end-effector trajectories
1 Task = a control objective (as in examples at the start of the control lecture)

1 Atask can be described as a function e to minimise error (as in optimal control)

1 Denote e as measuring the error between the real and reference outputs

e(x,u,t) = y(u,t) —y*(t)
error mellsure referYence

1 Alarge variety of such tasks can then fit into ID control. Relevant ones for your
labs are postural tasks (tracking a reference configuration) and force control
tasks, e.g. for contact interactions. 21



A very short note on contacts (for the lab)

1 We have seen that
T=Mq-+h
1 What if we introduce contacts?

We can write

r=Mg+h+J'T.

Where f_ is a 6D contact force. To control your robot for lifting the cube, you can set a desired f_ on
both effectors and use the control laws we have used before to compute the appropriate torques.

If equiped with a force sensor, you could also implement a Pl control to track the error accurately.

More info on: https://scaron.info/robotics/joint-torques-and-jacobian-transpose.html
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