

Advanced Robotics

Inverse Dynamics Control
(Ref: Ch. 11 of K.M. Lynch & F.C. Park, Modern Robotics)

Sethu Vijayakumar School of Informatics University of Edinburgh

References

These slides are adapted, with permission, from lecture notes of Andrea Del Prete.

See also Ch 11 of Lynch and Park, Modern Robotics.

Summary of rigid body motion

☐ The general form for the dynamics equation of articulated robots is:

$$\mathbf{M}\left(\mathbf{q}\right)\ddot{\mathbf{q}} + \mathbf{h}\left(\mathbf{q}, \dot{\mathbf{q}}\right) = \tau$$

- $oldsymbol{\square}$ Assuming robot is fully actuated and that $\mathbf{v_q} = \dot{\mathbf{q}}$
- ☐ This describes dynamics in the configuration space
- ☐ As with geometry / kinematics, we are often mainly interested in the <u>task space</u>

Outline

☐ Inverse dynamics control in the configuration space

☐ Task-space inverse dynamics

Reminder of inverse dynamics

- \Box Given ${\bf q},\,\dot{\bf q}$ and $\ddot{\bf q}$, compute torque commands τ that achieve desired acceleration $\ddot{\bf q}^d$
- \Box Given a reference $\mathbf{q}^r(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^r(t)$
- ☐ We assume we can measure **q** and **q**

Reminder of inverse dynamics

- \Box Given ${\bf q},\,\dot{{\bf q}}$ and $\ddot{{\bf q}}$, compute torque commands τ that achieve desired acceleration $\ddot{{\bf q}}^d$.
- \Box Given a reference $\mathbf{q}^r(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^r(t)$
- \Box We assume we can measure ${f q}$ and $\dot{{f q}}$
- $oldsymbol{\Box}$ We set $au = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$, and now we must compute desired $\ddot{\mathbf{q}}^d$

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r$$

Inverse dynamics control in a nutshell

- \Box Given ${\bf q},\,\dot{\bf q}$ and $\ddot{\bf q}$, compute torque commands τ that achieve desired acceleration $\ddot{\bf q}^d$.
- \Box Given a reference $\mathbf{q}^r(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^r(t)$
- \Box We assume we can measure \mathbf{q} and $\dot{\mathbf{q}}$
- \Box We set $\tau = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$, and now we must compute desired $\ddot{\mathbf{q}}^d$

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r$$
 ?

Inverse dynamics control in a nutshell

- \Box Given ${\bf q},\,\dot{\bf q}$ and $\ddot{\bf q}$, compute torque commands τ that achieve desired acceleration $\ddot{\bf q}^d$.
- \Box Given a reference $\mathbf{q}^r(t)$ find $\tau(t)$ such that resulting $\mathbf{q}(\tau(t))$ follows $\mathbf{q}^r(t)$
- ☐ We assume we can measure **q** and **q**
- $oldsymbol{\Box}$ We set $au = \mathbf{M}\ddot{\mathbf{q}}^d + \mathbf{h}$, and now we must compute desired $\ddot{\mathbf{q}}^d$

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r - \mathbf{K}_p(\mathbf{q} - \mathbf{q}^r) - \mathbf{K}_v(\dot{\mathbf{q}} - \dot{\mathbf{q}}^r)$$

Simpler control laws for manipulator

$$\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + g(\mathbf{q})$$
PD gravity torque

Even simpler is PID control:

$$\tau = -K_d \dot{\mathbf{e}} - K_p \mathbf{e} + \int_0^t K_i e(s) ds$$

Where integral replaces gravity compensation

All these control laws are stable. In theory, ID control > PD + gravity > PID

Inverse Dynamics control as optimisation problem

☐ As for inverse kinematics, we can write a least square problem:

$$(au^*,\ddot{q}^*)= \mathop{
m argmin}_{ au,\ddot{\mathbf{q}}}||\ddot{\mathbf{q}}-\ddot{\mathbf{q}}^d||^2$$
 Subject to $au=\mathbf{M}\ddot{\mathbf{q}}+\mathbf{h}$

☐ The optimal solution to this is exactly the ID control law if we set

$$\ddot{\mathbf{q}}^d = \ddot{\mathbf{q}}^r - \mathbf{K}_p(\mathbf{q} - \mathbf{q}^r) - \mathbf{K}_v(\dot{\mathbf{q}} - \dot{\mathbf{q}}^r)$$

□ So there may be no real advantage here, but the more general framing is useful for more complex problems

Least Square Problem (LSP) (reminder)

- ☐ LSP taxonomy:
 - \Box An L₂ norm cost $||Ax b||^2$
 - \square Possibly linear inequality / equality constraints (Cx <= d; D x = x)
- ☐ LSPs are a sub-class of convex Quadratic Problems (QPs) which have:
 - \square Quadratic cost $x^T H x + h^T x$, with H >= 0
 - \square Possibly linear inequality / equality constraints (Cx <= d; D x = x)
- □ LSPs and QPs can be solved **extremely** fast with off-the-shelf software
 => compatible with real-time control loops (~ 1 KHz)

Main advantage of optimisation is constraints

□ e.g., adding torque limits is much more straightforward:

$$(au^*,\ddot{q}^*)= \mathop{
m argmin}_{ au,\ddot{\mathbf{q}}}||\ddot{\mathbf{q}}-\ddot{\mathbf{q}}^d||^2$$
 Subject to $au=\mathbf{M}\ddot{\mathbf{q}}+\mathbf{h}$ $au^-\leq au\leq au^+$

Main advantage of optimisation is constraints

Assuming constant aceleration at each time step,

$$\dot{\mathbf{q}}(t + \Delta t) = \dot{\mathbf{q}}(t) + \Delta t \ddot{\mathbf{q}}$$

Joint velocities constraints:

Main advantage of optimisation is constraints

☐ Likewise for joint limits:

$$\mathbf{q}(t + \Delta t) = \mathbf{q}(t) + \Delta t \dot{\mathbf{q}}(t) + \frac{1}{2} \Delta t^2 \Delta t \ddot{\mathbf{q}}$$

- ☐ However, we need caution, as this can result in high accelerations
 - ☐ Incompatible with torque / current constraints
 - ☐ Leads to infeasible problems (i.e. no solutions may exist)
 - ☐ These issues are addressed in the research literature, but we will not discuss them further here

Task space inverse dynamics (TSID)

- \Box Joint space ID control expects reference $\mathbf{q}^r(t)$
- \Box What if we only have reference **end-effector trajectory** $\mathbf{x}^{r}(t)$?
 - $oldsymbol{\Box}$ Option 1: compute corresponding $oldsymbol{\mathbf{q}}^r(t)$ then apply ID control
 - ☐ Issue 1: this is the inverse geometry problem, non-linear problem with infinity of solutions
 - figspace Issue 2: Tracking ${f q}^r(t)$ is **sufficient** but not necessary to track ${f x}^r(t)$

This means that perturbations that affect $\mathbf{q}^r(t)$ but not the Forward Geometry FG(\mathbf{q}) are rejected

☐ What might an option 2 be?

☐ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

☐ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

lue Let's differentiate ${\cal V}$:

$$\mathcal{V}=\mathbf{J}\dot{\mathbf{q}}$$

$$egin{aligned} \mathcal{V} &= \mathbf{J}\dot{\mathbf{q}} \ \dot{\mathcal{V}} &= \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}} \end{aligned}$$

☐ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

lue Let's differentiate ${\cal V}$:

$$\mathcal{V} = \mathbf{J}\dot{\mathbf{q}}$$

$$\dot{\mathcal{V}} = \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}}$$

□ As a result, desired acceleration should be

$$\ddot{\mathbf{q}}^d = \mathbf{J}^+ (\dot{\mathcal{V}}^d - \dot{\mathbf{J}}\dot{\mathbf{q}})$$

☐ End-effector control. Feeback directly effector configuration

$$\dot{\mathcal{V}}^d = \dot{\mathcal{V}}^r - K_d(\mathcal{V} - \mathcal{V}^r) - K_p(\mathbf{x} - \mathbf{x}^r)$$

lue Let's differentiate ${\cal V}$:

$$\mathcal{V} = \mathbf{J}\dot{\mathbf{q}}$$

$$\dot{\mathcal{V}} = \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}}$$

☐ As a result, desired acceleration should be

$$\ddot{\mathbf{q}}^d = \mathbf{J}^+ (\dot{\mathcal{V}}^d - \dot{\mathbf{J}}\dot{\mathbf{q}})$$

Again, the torques are obtained straightforwardly as $~ au=\mathbf{M}\ddot{\mathbf{q}}^d+\mathbf{h}$

Option 2 is often preferred

- + Gains defined in Cartesian space
- + No pre-computations
- + Online specification of reference trajectory
- More complex controller

Generalising the notion of task

- Not all tasks are just a matter of tracking end-effector trajectories
- \Box Task = a control objective (as in examples at the start of the control lecture)
- ☐ A task can be described as a function *e* to minimise error (as in optimal control)
 - ☐ Denote e as measuring the **error** between the **real** and **reference** outputs

$$e(\mathbf{x}, \mathbf{u}, t) = y(\mathbf{u}, t) - y^*(t)$$
error measure reference

□ A large variety of such tasks can then fit into ID control. Relevant ones for your labs are postural tasks (tracking a reference configuration) and force control tasks, e.g. for contact interactions.

A very short note on contacts (for the lab)

■ We have seen that

$$\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$$

■ What if we introduce contacts?

We can write

$$\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h} + \mathbf{J}^T \mathbf{f}_c$$

Where \mathbf{f}_c is a 6D contact force. To control your robot for lifting the cube, you can set a desired \mathbf{f}_c on both effectors and use the control laws we have used before to compute the appropriate torques.

If equiped with a force sensor, you could also implement a PI control to track the error accurately.

More info on: https://scaron.info/robotics/joint-torques-and-jacobian-transpose.html