

Automatic Speech Recognition: Introduction

Peter Bell

Automatic Speech Recognition— ASR Lecture 1

12 January 2026

Course details

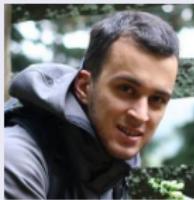
- **Lectures:** 18 lectures, delivered in person
- **Labs:** Weekly lab sessions – using OpenFst (openfst.org) and Python
 - Lab sessions will start in Week 3
- **Assessment:**
 - First five lab sessions worth **10%**, assessed by the lab demonstrator
 - Coursework, building on the lab sessions, worth **40%**
 - ***Closed*** book exam in April or May worth **50%**

<https://opencourse.inf.ed.ac.uk/asr>

Course details

• People:

- Course organiser: Peter Bell
- Assistant lecturer: Hao Tang
- Guest lecturer: Ondrej Klejch
- TA: George Karakasidis
- Demonstrators: Emily Gaughan, Yen Meng



18 lectures in total

- 3 lectures delivered by Hao, including: Signal Signal Analysis (lectures 2-3) and Self Supervised Learning for Speech (lecture 17)
- 1 guest lecture delivered by Ondrej on a cutting-edge research topic (lecture date TBC)
- The remaining 14 lectures delivered by me

- Series of weekly labs using Python, OpenFst and Kaldi
- They count towards 10% of the course credit
- Labs start week 3 – expected to be three lab groups
- You will need to work **in pairs**
- Labs will give you hands-on experience of using HMM algorithms to build your very own ASR system from scratch
 - These labs are an important pre-requisite for the coursework – take advantage of the demonstrator support!

Other teaching support

- Teaching assistant George Karakasidis will help with lab and coursework setup, answering questions online and marking the lab submissions
- We use Piazza, and aim for a quick response time throughout the semester and right up until the exam
- I don't run regular office hours but am happy to meet any students by arrangement at almost any time (individually or in a group)

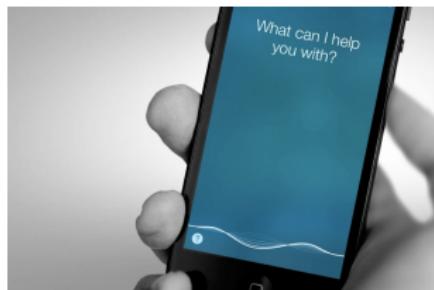
Your background

If you have taken:

- Speech Processing *and* any of (AML, PMR, MLP)
 - Perfect!
- Any of AML, PMR or MLP) *but not* Speech Processing (probably you are from Informatics)
 - You'll require some speech background:
 - A couple of the lectures will cover material that was in Speech Processing, particularly related to signal processing
 - Some additional background study (including material from Speech Processing)
- Speech Processing *but none of* (AML, PMR or MLP) (probably you are from SLP)
 - You'll benefit from gaining some machine learning background (especially neural networks)
 - A couple of introductory lectures on neural networks provided for SLP students
 - Some additional background study might be needed

What is speech recognition?

What is speech recognition?



What is speech recognition?

Speech-to-text transcription

- Transform recorded audio into a sequence of words
- Just the words, no meaning.... But do need to deal with acoustic ambiguity: “Recognise speech?” or “Wreck a nice beach?”

Sometimes also considering...

- Speaker diarization: Who spoke when?
- Speech recognition: what did they say?
- Paralinguistic aspects: how did they say it? (timing, intonation, voice quality)
- Speech understanding: what does it mean?

What we won't cover

What we won't cover


```
pip install git+https://github.com/m-bain/whisperx.git
```

If already installed, update package to most recent commit

```
pip install git+https://github.com/m-bain/whisperx.git --upgrade
```

If wishing to modify this package, clone and install in editable mode:

```
$ git clone https://github.com/m-bain/whisperX.git
$ cd whisperX
$ pip install -e .
```


You may also need to install ffmpeg, rust etc. Follow openAI instructions here

<https://github.com/openai/whisper#setup>.

What we won't cover

Python usage

```
import whisperx
import gc

device = "cuda"
audio_file = "audio.mp3"
batch_size = 16 # reduce if low on GPU mem
compute_type = "float16" # change to "int8" if low on GPU mem (may reduce accuracy)

# 1. Transcribe with original whisper (batched)
model = whisperx.load_model("large-v2", device, compute_type=compute_type)

# save model to local path (optional)
# model_dir = "/path/"
# model = whisperx.load_model("large-v2", device, compute_type=compute_type, download_root=m

audio = whisperx.load_audio(audio_file)
result = model.transcribe(audio, batch_size=batch_size)
print(result["segments"]) # before alignment
```

- We don't just focus on cutting-edge methods – aim to give you a thorough understanding of how the field developed from the 1980s onwards
- Most lectures focus on the underlying theory, though some are on particular applied topics
- Emphasis on learning by doing, using the labs and coursework
- Course materials are largely self-contained, though the recommended reading will improve your understanding

Why is speech recognition difficult?

From a linguistic perspective

Many sources of variation

Speaker Tuned for a particular speaker, or
speaker-independent? Adaptation to speaker
characteristics, eg. age, gender, vocal tract length

From a linguistic perspective

Many sources of variation

Speaker Tuned for a particular speaker, or
speaker-independent? Adaptation to speaker
characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions
(microphone, phone line, room acoustics)

From a linguistic perspective

Many sources of variation

Speaker Tuned for a particular speaker, or
speaker-independent? Adaptation to speaker
characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions
(microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue
or spontaneous conversation?

From a linguistic perspective

Many sources of variation

Speaker Tuned for a particular speaker, or
speaker-independent? Adaptation to speaker
characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions
(microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue
or spontaneous conversation?

Vocabulary Machine-directed commands, scientific language,
colloquial expressions

From a linguistic perspective

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Vocabulary Machine-directed commands, scientific language, colloquial expressions

Accent/dialect Within-language accent variation, non-native speakers

From a linguistic perspective

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Vocabulary Machine-directed commands, scientific language, colloquial expressions

Accent/dialect Within-language accent variation, non-native speakers

Other paralinguistic Emotion, socio-economic background, ...

From a linguistic perspective

Many sources of variation

Speaker Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics, eg. age, gender, vocal tract length

Environment Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)

Style Continuously spoken or isolated? Planned monologue or spontaneous conversation?

Vocabulary Machine-directed commands, scientific language, colloquial expressions

Accent/dialect Within-language accent variation, non-native speakers

Other paralinguistic Emotion, socio-economic background, ...

Language spoken Estimated 7,000 languages, most with limited training resources; code-switching; language change

From a machine learning perspective

- As a classification problem: very high dimensional output space

From a machine learning perspective

- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)

From a machine learning perspective

- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)
- Data is often noisy, with many “nuisance” factors of variation in the data

From a machine learning perspective

- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)
- Data is often noisy, with many “nuisance” factors of variation in the data
- Very limited quantities of training data available (in terms of words) compared to text-based NLP
 - Manual speech transcription is very expensive (10x real time)

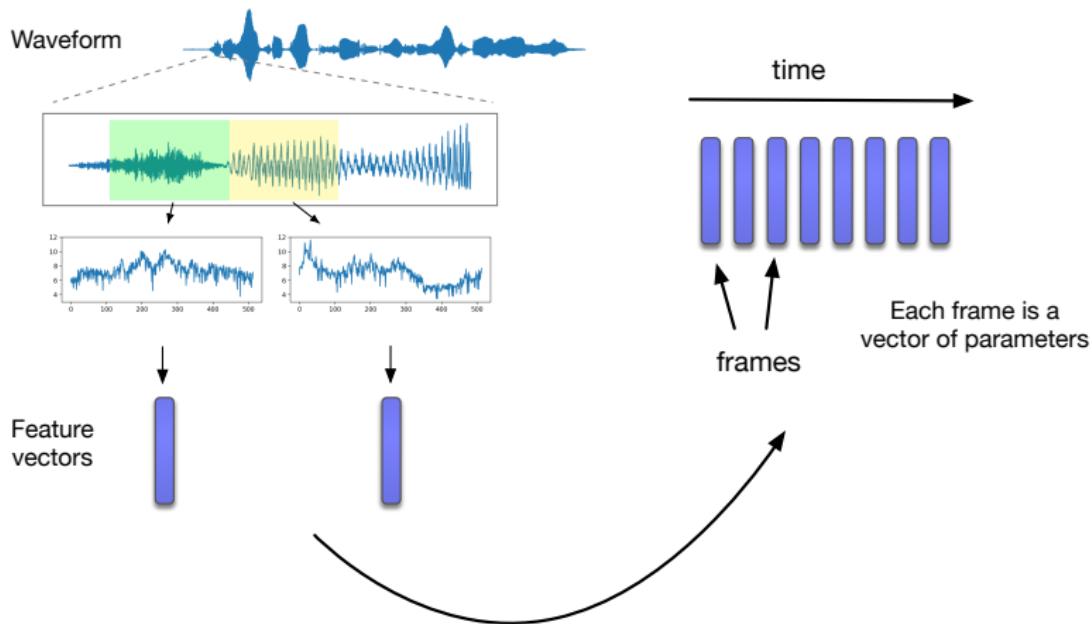
From a machine learning perspective

- As a classification problem: very high dimensional output space
- As a sequence-to-sequence problem: very long input sequence (although limited re-ordering between acoustic and word sequences)
- Data is often noisy, with many “nuisance” factors of variation in the data
- Very limited quantities of training data available (in terms of words) compared to text-based NLP
 - Manual speech transcription is very expensive (10x real time)
- Hierarchical and compositional nature of speech production and comprehension makes it difficult to handle with a single model

The speech recognition problem

- We generally represent recorded speech as a sequence of acoustic feature vectors (observations), X and the output word sequence as W
- At recognition time, our aim is to find the most likely W , given X
- To achieve this, statistical models are trained using a corpus of labelled training utterances (X^n, W^n)

Representing recorded speech (X)



Represent a recorded utterance as a sequence of *feature vectors*
Reading: Jurafsky & Martin section 9.3

- **Phonemes**

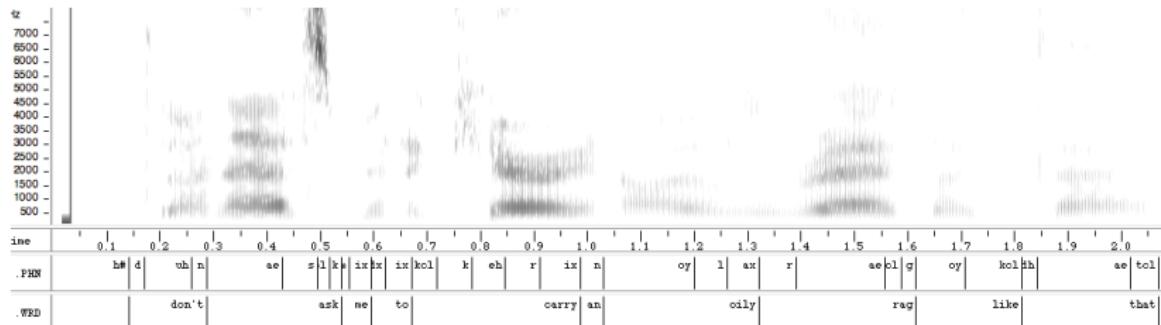
- abstract unit defined by linguists based on contrastive role in word meanings (eg “pat” vs “bat”)
- 40–50 phonemes in English

- **Phones**

- speech sounds defined by the acoustics
- phones may be *allophones* of the same phoneme (eg /p/ in “pit” and “spit”)
- limitless in number
- Possible alternatives: syllables, characters (“graphemes”), automatically derived units, ...

(Slide taken from Martin Cooke from long ago)

Labelling speech (W)



Labels may be at different levels: words, phones, sentences, etc.

Labels may or may not be *time-aligned* – do we know the start and end times of an acoustic segment corresponding to a label?

Reading: Jurafsky & Martin chapter 7 (especially sections 7.4, 7.5)

Two machine learning challenges

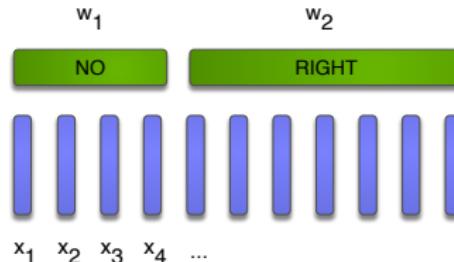
In **training** the model:

Aligning the sequences X^n and W^n for each training utterance

Two machine learning challenges

In **training** the model:

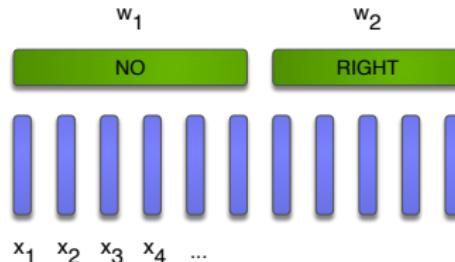
Aligning the sequences X^n and W^n for each training utterance



Two machine learning challenges

In **training** the model:

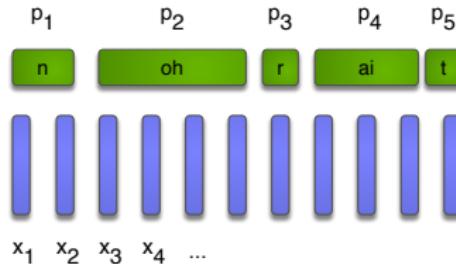
Aligning the sequences X^n and W^n for each training utterance



Two machine learning challenges

In **training** the model:

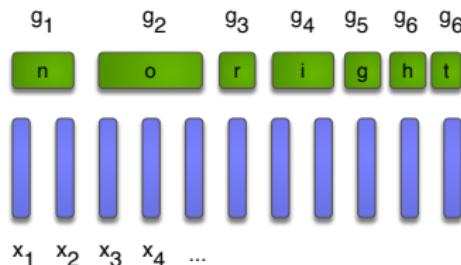
Aligning the sequences X^n and W^n for each training utterance



Two machine learning challenges

In **training** the model:

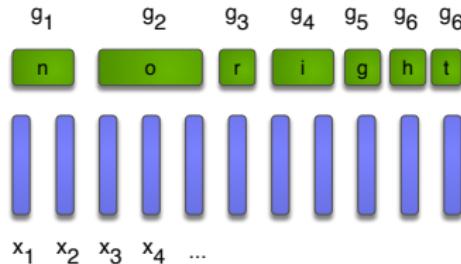
Aligning the sequences X^n and W^n for each training utterance



Two machine learning challenges

In **training** the model:

Aligning the sequences X^n and W^n for each training utterance



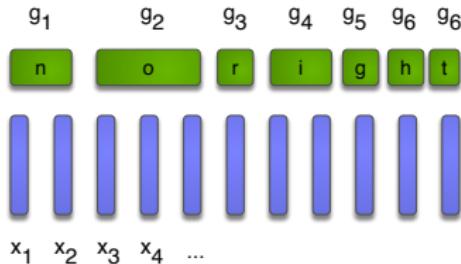
In **performing recognition**:

Searching over all possible output sequences W
to find the most likely one

Two machine learning challenges

In **training** the model:

Aligning the sequences X^n and W^n for each training utterance

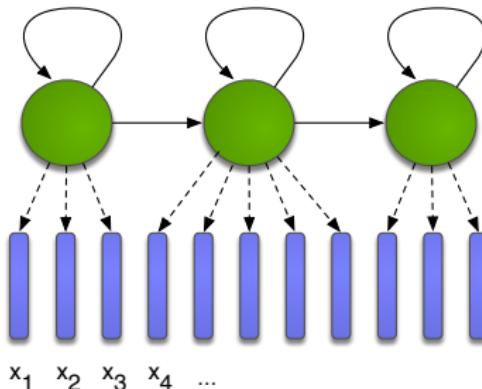


In **performing recognition**:

Searching over all possible output sequences W
to find the most likely one

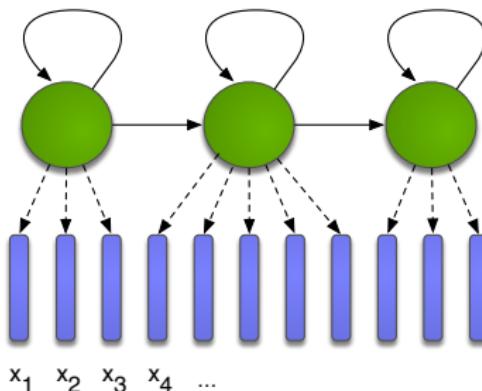
The **hidden Markov model** (HMM) provides a good solution to both problems

The Hidden Markov Model



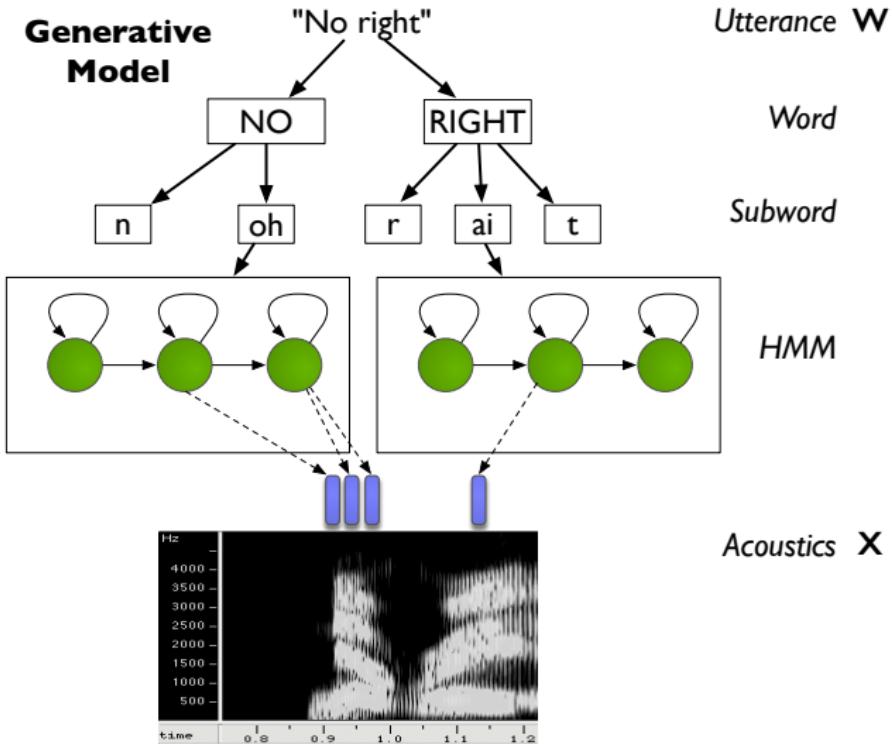
- A simple but powerful model for mapping a sequence of continuous observations to a sequence of discrete outputs
- It is a **generative** model for the observation sequence – also a **noisy channel** model
- Algorithms for training (forward-backward) and recognition-time decoding (Viterbi)

The Hidden Markov Model



- A simple but powerful model for mapping a sequence of continuous observations to a sequence of discrete outputs
- It is a **generative** model for the observation sequence – also a **noisy channel** model
- Algorithms for training (forward-backward) and recognition-time decoding (Viterbi)
- Later in the course we will also look at newer all-neural, fully-differentiable “end-to-end” models

Hierarchical modelling of speech



“Fundamental Equation of Statistical Speech Recognition”

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence W^* is given by

$$W^* = \arg \max_W P(W | X)$$

“Fundamental Equation of Statistical Speech Recognition”

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence, the most likely word sequence W^* is given by

$$W^* = \arg \max_W P(W | X)$$

Applying Bayes' Theorem:

$$P(W | X) = \frac{p(X | W)P(W)}{p(X)}$$

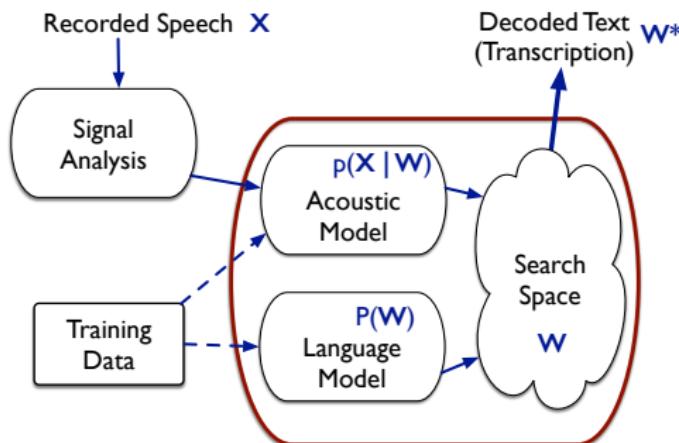
$$\propto p(X | W)P(W)$$

$$W^* = \arg \max_W \underbrace{p(X | W)}_{\text{Acoustic model}} \underbrace{P(W)}_{\text{Language model}}$$

Speech Recognition Components

$$W^* = \arg \max_W p(X | W)P(W)$$

Use an acoustic model, language model, and lexicon to obtain the most probable word sequence W^* given the observed acoustics X

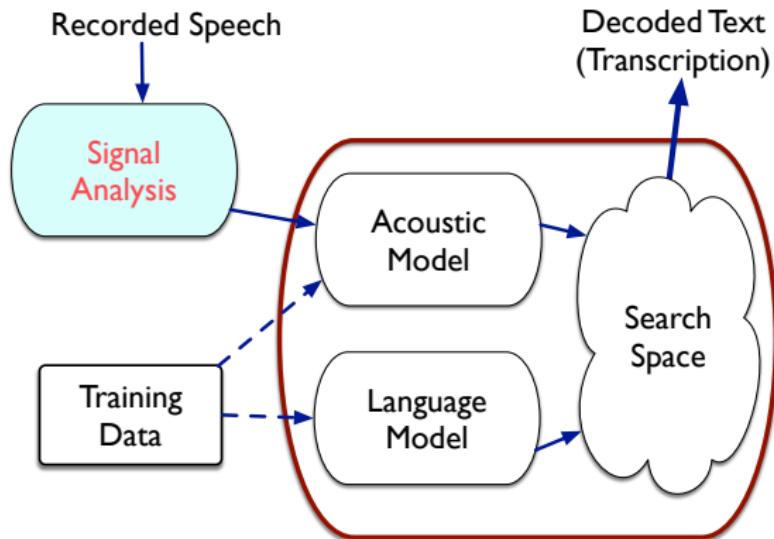


- How accurate is a speech recognizer?
- String edit distance
 - Use dynamic programming to align the ASR output with a reference transcription
 - Three type of error: insertion, deletion, substitutions
- Word error rate (WER) sums the three types of error. If there are N words in the reference transcript, and the ASR output has S substitutions, D deletions and I insertions, then:

$$\text{WER} = 100 \cdot \frac{S + D + I}{N} \% \quad \text{Accuracy} = 100 - \text{WER} \%$$

- Speech recognition evaluations: common training and development data, release of new test sets on which different systems may be evaluated using word error rate

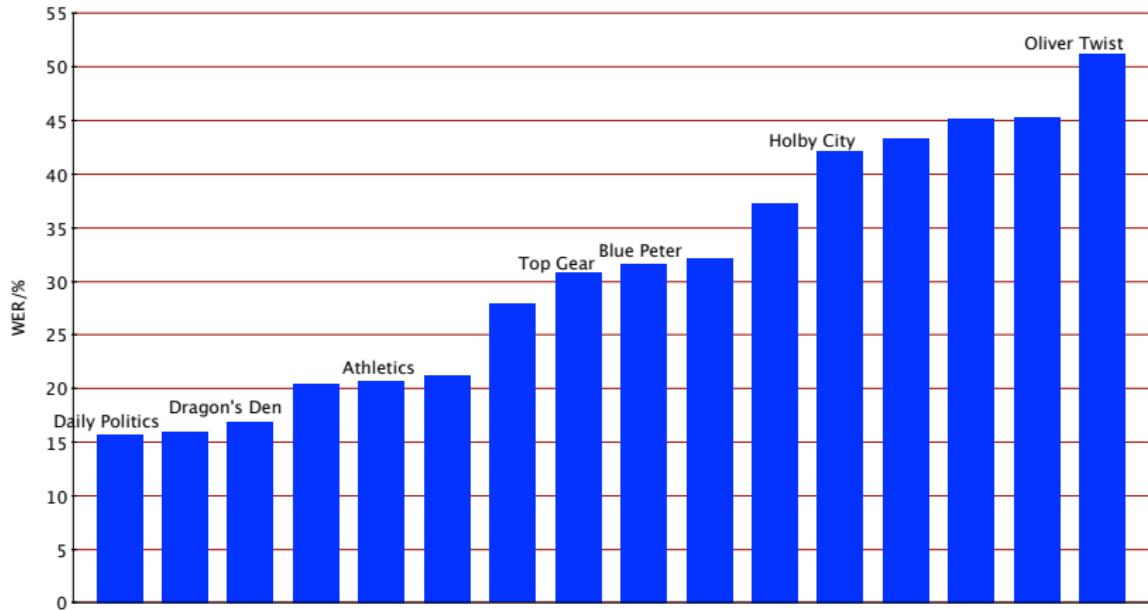
Next Lecture



Example 1: recognising TV broadcasts (2015)

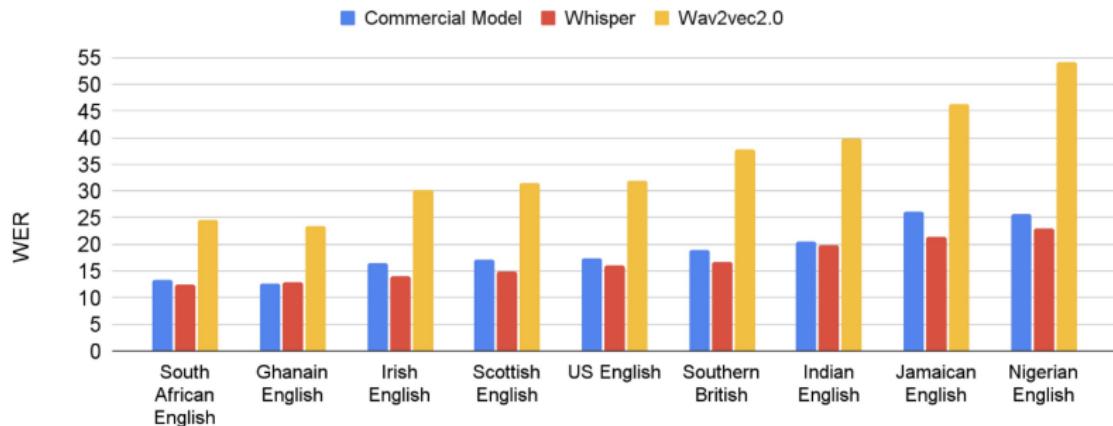
MGB
CHALLENGE

Example 1: recognising TV broadcasts (2015)



Example 2: recognising conversations (2023)

E D A C C
The Edinburgh International
• Accents of English Corpus •



Reading

- Jurafsky and Martin (2008). *Speech and Language Processing* (2nd ed.): Chapter 7 (esp 7.4, 7.5) and Section 9.3.
- General interest:
 - *The Economist Technology Quarterly*, “Language: Finding a Voice”, Jan 2017.
<http://www.economist.com/technology-quarterly/2017-05-01/language>
 - *The State of Automatic Speech Recognition: Q&A with Kaldi's Dan Povey*, Jul 2018.
<https://medium.com/descript/the-state-of-automatic-speech-recognition-q-a-with-kaldis-dan-povey-c860aada9b85>